Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

2014-04-01
2014-01-1356
The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
Technical Paper

Electric Low Pressure Fuel Pump Control for Fuel Saving

2013-04-08
2013-01-0339
The trend of CO2 emission limits and the fuel saving due to the oil price increase are important drivers for engines development. The involved technologies have the aim to improve the global engine efficiency, improving combustion and minimizing energy losses. The engine auxiliary devices electrification (i.e. cooling pump or lubricating pump) is a way to reduce not useful energy consumption, because it becomes possible to control them depending on engine operating point. This kind of management can be applied to the electric low pressure fuel pump. Usually the fuel delivery is performed at the maximum flow rate and a pressure regulator discharges the exceeding fuel amount inside the rail (i.e. gasoline engine) or upstream of the high pressure pump (i.e. common rail diesel engine). At part load, especially in diesel application, the electric fuel pump flow is higher than needed for engine power generation.
Technical Paper

Advanced GDI Injector Control with Extended Dynamic Range

2013-04-08
2013-01-0258
Considering the world-wide market for GDI engines, the introduction of tighter polluting emission legislation, additional costs, vehicle fuel economy and pollutants reduction become substantial drivers. Focusing on particulate reduction, direct injection gasoline engines require advanced combustion strategies. The main levers used are injection splitting in order to reduce wall impingement (due to lower penetration) and higher rail pressure level to reduce droplet size. To reach this target it is necessary to improve precision in term of injected quantity in the small quantity region with high fuel rail pressure and during the actuation of multiple injections. As a consequence of the requirements of high quantities at full load, known GDI solenoid injectors show an unacceptable spread in terms of small injected quantity when the energizing time is small such that the injector works in the ballistic zone. Following these premises an electronic approach is needed.
X