Refine Your Search

Topic

Author

Search Results

Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

Vibro-Acoustic Optimization of 4 Cylinder Diesel Engine Oil Pan Structure for Lower Sound Radiation.

2016-06-15
2016-01-1771
By reducing overall noise emanating from Engine at design phase, permits to reduce both time-to-market and the cost for developing new engines. In order to reduce vibration and radiated noise in engine assembly, oil pan is one of the most critical components. This study explains the key-steps that are executed to optimize the oil pan design for 4-cylinder diesel engine by improving Normal Modes, modified Topology, reduced Forced Frequency Response and ATV analysis for reducing its noise radiation. Using Multi-body tool crankshaft forces were generated and the FE model of Base Design was analysed for its noise radiation and panel contribution was done for finding the most radiating panels using Boundary Element Method approach. A series of iterative optimization were carried out with commercial software. Parameters like Stiffness, material property, Ribbing patterns and Shape of the Oil pan was modified to shift the natural frequencies of the component and reduce the sound radiation.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

The Influence of the Material Construction of Leatherette in Squeak Noise Control

2023-04-11
2023-01-0075
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN).
Technical Paper

Synchronizer Spring Failure Due to Gear Shift Loads - Investigation and Design Recommendations

2023-11-10
2023-28-0051
In manual transmission, the vital function of synchronizer pack is to synchronize the speed of the target gear for smooth gear shifting. The synchronizer pack consists of various elements and each of these elements has specific function. These elements are baulk rings, shifter sleeve, hub, synchro key, synchro springs etc. The function of synchronizer can be affected due to failure of any one of these elements. This work focuses on the failure of synchronizer pack due to synchro spring failure. The function of synchronizer spring is to exert the required force, to index the synchronizer ring before the movement of shifter sleeve over synchronizer ring. During the shifting of shifter sleeve from one gear to another gear, the springs deflect in both shifting directions. This causes fatigue failure of synchronizer springs. The manufacturing variations, and part quality issues results in very early fatigue failure of synchronizer springs.
Technical Paper

Sustainable Polyurethane Composite with Coconut Fiber for NVH Applications

2016-02-01
2016-28-0143
With increasing growth of vehicular population, there is an increasing demand for raw materials. This has added strain to the available resources, which is becoming more and more unsustainable. As a result, search for sustainable materials are continuously happening in our industry and there is a strong focus from everyone to incorporate more and such materials. One way of doing so, is by blending naturally available materials like fibers, with polymers. In this study, naturally available Coconut fibers have been blended successfully with Polyurethane foam, thereby improving the green footprint of the vehicle. Coconut fibers are naturally occurring fiber extracted from the husk of the coconut. Polyurethane foam is the most versatile polymeric foam used in several places of automobile for reducing the Noise, Vibration & Harshness. The composite was manufactured using reaction injection molding technique by reacting polyol with iso-cyanide.
Technical Paper

Study on the Effect of Clutch Hydraulic System Hysteresis on Intermittent Clutch Pedal Stuck Concern

2023-04-11
2023-01-0462
The clutch pedal in manual transmission plays a significant role in defining the comfort of driver as it is a direct customer interfaces in the vehicle. Clutch & its hydraulic release system in manual transmission are the significant components which affects the maneuverability of the vehicle and the driver comfort. The clutch pedal characteristics optimization is one of the vital parameters are involving various parameters like pedal effort, pedal travel, hump, engagement and disengagement travel, modulation travel & pedal return curve min load. Normally the clutch pedal characteristics has a hysteresis between the forward and return curve (depress and release of the clutch pedal). The hysteresis is the component of mechanical friction like clutch pedal, clutch cover, and hydraulic seal friction. For an optimum clutch pedal feel, free play, peak effort, max. travel, hump and return load are the major functional parameters.
Technical Paper

Study of Intake and Exhaust System Acoustic Performance Refinement with the Help of Vibro-Acoustic Analysis Tool

2010-06-09
2010-01-1427
Increase in customer's awareness for better vehicle NVH has prompted automobile industry to address NVH issues more seriously. Among other critical vehicle systems for NVH, Air Intake and Exhaust Systems play an important role in terms of passenger compartment noise, sound quality and vehicle pass-by noise. Hence proper design & development of these systems is imperative to reduce their contribution in overall vehicle NVH. This needs to be achieved within constraints of meeting other functional requirements such as emissions and engine performance. The design parameters one needs to look at while developing the intake and exhaust system are mainly the acoustic transmission loss, structural noise radiations from the surfaces and structural isolation between body and these systems. This paper demonstrates the use of FEM approach for Vibro-Acoustic Analysis as a practical means for design of intake and exhaust system in terms of high transmission loss.
Technical Paper

Soot Sensor Elimination with DPF Substrate Failure Monitoring

2024-01-16
2024-26-0153
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system.
Technical Paper

Solving Whine Noise in Electric Vehicles: A Comprehensive Study Using Experimental and Multiphysics Techniques

2024-01-16
2024-26-0222
This paper examines one of the approaches used to identify the root causes of sound quality issues in vehicles, including the direct impact of psychoacoustics on the human experience. Specifically, the absence of masking effects provided by traditional combustion engines has made noise and vibration from electric drives significant factors in decision-making processes, with high-pitched tonal noise from electric motors causing annoyance and sound quality concerns for electrified propulsion systems. During vehicle testing at different speeds, a whining noise was observed, leading to an NVH test to locate the noise source. The noise is traced to the transmission by the dominating order of input reduction along with the contribution from the casing resonance. A multi-physics-based e-NVH analysis was performed, and the test data were correlated.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Technical Paper

Setting of Inspection Parameters for Automotive Transmission Parts in Various Bench Tests

2013-09-24
2013-01-2448
This paper deals with setting of Inspection parameters for selected automotive transmission parts in various bench tests. This paper we are discuss about critical dimension's measured for particular type of test. It is not possible to measure all the dimensions of a component for doing a particular test. This is due to time constraints set by program delivery deadlines. From above statement it can be deduced that it is almost impossible to measure all dimensions of a component. A bench level test may consist of two major tests. They are maximum load test and gear shift durability test. The maximum load test deals with gear box durability test and torque carrying capacity of gearbox. Parameters to be measured for some of above parts will be identified. More importantly it will also identify see reasons for that parameter to be measured.
Technical Paper

Servomotor Controlled Standard Automated Manual Transmission for Rapid Smooth Shifts

2013-10-14
2013-01-2605
Present day AMT unit uses two high pressure hydraulically operated pistons for select & shift operations which make the unit weigh around 8kg. Besides this it also makes the unit more complex & unreliable with a lot of torque interruption. The use of electrical servo motors steps in here as a better alternative as it provides a more precise and smoother shift. To test this we used a 5-MT Transmission. For the selection, a precise 14.5 degree of twisting was required which was easily achieved by the servo motor. Further, shift of 10.5mm could be made possible by using the motor to shift the rack using a pinion on the shaft. This system then essentially eliminates the whole hydraulic circuit, the housing of actuator pack & power pack making it a simpler unit all together. Thus, it offers an uninterrupted torque path from the engine to vehicle which allows for a seamless gearshift. This seminal paper provides an introduction to the technology together.
Technical Paper

Servomotor Controlled Standard Automated Manual Transmission for Rapid Smooth Shifts

2012-09-24
2012-01-1989
Present day AMT unit uses two high pressure hydraulically operated pistons for select & shift operations which make the unit weigh around 8kg. Besides this it also makes the unit more complex & unreliable with a lot of torque interruption. The use of electrical servo motors steps in here as a better alternative as it provides a more precise and smoother shift. To test this we used a 5 Gear-Manual Transmission. For the selection, a precise 14.5 degree of twisting was required which was easily achieved by the servo motor. Further, shift of 10.5mm could be made possible by using the motor to shift the rack using a pinion on the shaft. This system then essentially eliminates the whole hydraulic circuit, the housing of actuator pack & power pack making it a simpler unit all together. A Motor is attached to the output shaft of the Transmission which drives in power while the AMT unit is making transition from one gear to another.
Technical Paper

Sensitivity Analysis of Hydraulic Brake Load Sensing Valve

2017-01-10
2017-26-0362
Hydraulic Load sensing brake valves are used in vehicles from a long time in the market. They proportionate the rear brake line pressure according to the rear axle load in order to avoid the rear wheel lock during braking. During the actual test of the Hydraulic load sensing valve on a subject vehicle, there was drop in performance against its expected peak brake performance. In the current work a detailed analysis is made to understand the sensitivity of the load sensing valve & its effect on the vehicle performance. The parameters affecting the valve sensitivity along with vehicle level factors affecting the performance are analysed during the work.
Technical Paper

Road Noise Identification and Reduction Measures

2013-05-13
2013-01-1917
In a scenario where cost and weight targets are becoming critical, we tend to produce lighter and more powerful vehicles. In this context, NVH becomes one of crucial parameters in overall performance delivery. Other than power train, road induced noise also becomes an important parameter within vehicle development. Predecessor vehicle is body over frame structure and here a monocoque vehicle is considered for study. Different techniques like transfer path analysis, vibro-acoustic modal analysis, operational deflection shapes are used to identify the major force paths, radiating panels and their sensitivity to noise at operator ear location. Simulation model of body is built with good correlation and input forces are given at different attachment points to predict the noise levels. This combined approach helped us in reducing the overall noise level at certain constant speed by 4 dB(A) and also with great ease. All recommendations from this exercise are implemented
Technical Paper

Reduction of Driveline Boom Noise and Vibration of 40 Seat Bus through Structural Optimization

2017-07-10
2017-28-1926
In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
X