Refine Your Search

Topic

Search Results

Technical Paper

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Study of Optimal Magnification for Retained Austenite Evaluation in Low carbon Case Hardening steel Using Metallurgical Microscopy

2014-04-01
2014-01-1017
This study on optimum magnification at which Retained austenite to be evaluated by comparing the difference in determining the retained austenite in low carbon carburizing alloy steel using the optical metallurgical micrographic method and X-ray diffraction method. The retained austenite phase will be in surface and color is white in nature also its presented in between the martensite needles. It can be distinguished as separate micro-constituents by using image analyzing software. In another method the RA measurements were carried out on the surface by PROTO iXRD Retained austenite measuring system using Cr K radiation. The (211) and (200) reflections of Martensite and (220) and (200) reflections of Austenite were made for this estimation. However, the calculated values of retained austenite by metallurgical microscope in different magnifications are not identical.
Technical Paper

Silent Block Bush Design and Optimization for Pick-Up Truck Leaf Spring

2017-03-28
2017-01-0455
Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
Technical Paper

Setting of Inspection Parameters for Automotive Transmission Parts in Various Bench Tests

2013-09-24
2013-01-2448
This paper deals with setting of Inspection parameters for selected automotive transmission parts in various bench tests. This paper we are discuss about critical dimension's measured for particular type of test. It is not possible to measure all the dimensions of a component for doing a particular test. This is due to time constraints set by program delivery deadlines. From above statement it can be deduced that it is almost impossible to measure all dimensions of a component. A bench level test may consist of two major tests. They are maximum load test and gear shift durability test. The maximum load test deals with gear box durability test and torque carrying capacity of gearbox. Parameters to be measured for some of above parts will be identified. More importantly it will also identify see reasons for that parameter to be measured.
Technical Paper

New Trends of Material & Heat Treatment in Automotive Transmission Shaft

2013-09-24
2013-01-2446
This paper deals with new trends in materials & heat treatment in automotive transmission shafting. The material is S48C a low carbon alloy steel and material for automotive shaft special significance as it reduces overall cost in vehicle transmission shafts. Conventional method of shaft heat heat-treatment is case hardening for 20MnCr5. S48C is low-carbon alloy steel. This is an alternate proposal to 20MnCr5.There are lot of advantages in induction hardening over case hardening. Also induction hardening process with S48C material becomes cheaper than case-hardening with 20MnCr5.Strength and resistance to stress must therefore be carefully considered during the material selection and heat-treatment process. We have done Static torsion test for 20MnCr5 (case hardened steel) and S48C (induction hardened shaft). Test results were comparable with 20MnCr5 (case hardened steel). Also after test a metallurgical inspection was done on an S48C (induction hardened shaft).
Technical Paper

Light Weight Composite Structure Approach of Automotive Soft Top Construction

2023-04-11
2023-01-0876
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts.
Technical Paper

Investing Factors Affecting Door Slam Noise of SUV and Improved Performance by DFSS Approach

2011-05-17
2011-01-1595
Recent development in automobile industries has seen increased customer attention for good door slamming noise. One of the constituent which plays major role in building brand image of vehicle in terms of NVH performance is door slam noise quality. Hence it is very desirable to understand how different door elements radiate sound during a door-closing event and how to optimize a door structure to achieve specific sound target in order to ensure the door closing noise quality, NVH engineers needed to look at contributions from different door subsystems. The use of statistical tools like Six Sigma can further help them to ensure the consistency in results. This paper explains the systematic approach used to characterize different element of door which contributes to the overall door slam noise quality through QFD (Quality Function Deployment) and contribution analysis. The different mechanisms contributing to door slam noise were studied.
Technical Paper

Investigation on microstructure, mechanical and wear properties of alloyed gray cast iron for brake applications

2013-11-27
2013-01-2881
The strength and wear resistance of four alloyed cast irons with elements like Ni. Mo, Cu, Cr and Al have been compared and analyzed. The increased hardness is reducing the wear resistance of the alloy due to graphite flakes. Higher carbon produces more graphite flakes which act as weak points for reducing strength and wear resistance. The wear rate increases for harder cast iron sample with more graphite flakes. Wear rate drastically increases with increase in carbon equivalent. Strength was found to decrease for samples with higher graphite flakes. The wear debris consisted of graphite flakes in platelet like morphology along with iron particles from the matrix. The presence of carbon at the sliding interface also sometimes decreases wear rate.
Technical Paper

Engineering Failure Analysis Methodology & Influence of Spline Cutting Method in Torsional Life Improvement in Tractor Axle Application

2023-05-25
2023-28-1318
The Tractors are inevitable in the world due to its remarkable contribution majorly in farming process and other applications. the farming equipment needs to perform multiple applications to enhance the productivity and increased horsepower demands all-wheel drive (Refer fig. 1) or four-wheel drive option in the tractor. So, it is becoming a mandatory feature. The main objective of this study is, improving the torsional fatigue life in front axle spindle shaft by modifying the spline design and optimizing induction hardening heat treatment process in such a way that the other part of the system will have a minor or no design change. It helps us to reduce the part count variability, lower manufacturing cost and development time.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Durability of Customer Perceived Quality of Molded-in-Color Car Bumper

2019-01-09
2019-26-0319
Customer perceived quality (CPQ) of the car is the impression of excellence that a customer experiences the brand through sight, sound, touch, and scent. Molded-in-color (MIC) bumper’s aesthetic appeal contributes significantly to the CPQ of the car. Typical parameters used to define CPQ are color, gloss, grain definition, grain depth, geometry and draft. In this work the durability of the color and gloss post ageing is understood by using analytical and characterization tools. Using the results of ageing characterization, an attempt has been made to understand the retained newness of MIC bumper.
Technical Paper

Development of simulation methodology to evaluate Leaf Spring strength and predict the Leaf Interface stresses and correlating with test

2024-04-09
2024-01-2735
Leaf Springs are commonly used as a suspension in heavy commercial vehicles for higher load carrying capacity. The leaf springs connect the vehicle body with road profile through the axle & tire assembly. It provides the relative motion between the vehicle body and road profile to improve the ride & handling performance. The leaf springs are designed to provide linear stiffness and uniform strength characteristics throughout its travel. Leaf springs are generally subjected to dynamic loads which are induced due to different road profiles & driving patterns. Leaf spring design should be robust as any failure in leaf springs will put vehicle safety at risk and cost the vehicle manufacturer their reputation. The design of a leaf spring based on conventional methods predicts the higher stress levels at the leaf spring center clamp location and stress levels gradually reduce from the center to free ends of the leaf spring.
Technical Paper

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

2019-10-11
2019-28-0105
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost.
Technical Paper

Development and Deployment of Bolted Joint Integrity Evaluation for Automotive Suspension Joints

2022-03-29
2022-01-0761
Bolted joints are the most used joints in automotive suspension assemblies. They are expected to retain the strength over the course of useful life of the vehicle and contribute to durability in a big way through reduction of stress amplitudes. Any sort of loosening or slip or breakage in these joints can lead to noise or catastrophic failures. In the past, such issues were addressed through thumb rules and design guidelines. However, with the focus on first-time right tests with reduced validation time it has become important to upfront predict the suspension joint integrity through simulation. Toward this objective, a novel approach was developed to simulate the suspension joint integrity for bolted joints. This approach considers various parameters like bolt preload, tolerance stackup of the parts in the joint, coefficients of friction of various interfaces, quality of contact and effect of deformation at the thread interface on joint integrity.
Technical Paper

Design of a Single Rail Internal Gear Shift System for a 5 Speed Manual Transmission

2013-04-08
2013-01-1771
This paper presents the detailed design of a Single Rail Internal Gear Shift System for a 5-speed manual transmission of a load carrier vehicle. Gear shifting in manual transmissions is achieved by actuating a synchronizer sleeve and engaging it with the required gear. Actuation of synchronizer sleeves is effected by gear shift forks which are supported in the transmission by a rail/shaft. Conventional 5-speed transmissions use Multi Rail Gear shift systems, wherein each of the forks viz. Fork 1-2, Fork3-4 & Fork 5th, for actuating the synchronizer sleeves, are supported by and fixed to individual rails. This paper presents the design of a Single Rail Gear shift system, wherein all the gear shift forks will be supported on a common rail/shaft, thus making the entire system compact and reducing the system weight. The Single Rail, in the proposed design, apart from supporting the three forks, also serves to actuate the Reverse Gear, which is of sliding mesh type in this case.
Technical Paper

Design and Development of an Ultra-Low Friction and High Power-Density Diesel for the Indian Market

2020-04-14
2020-01-0834
This paper explains the methodology to design a high power-density diesel engine capable of 180 bar peak firing pressure yet achieving the lowest level of mechanical friction. The base engine architecture consists of an 8 mm crank-offset which is an optimized value to have the lowest piston side forces. The honing specification is changed from a standard plateau honing to an improved torque plate slide honing with optimized surface finish values. The cumulative tangential force of the piston rings is reduced to an extreme value of 28.5 N. A rectangular special coated top ring and a low-friction architecture oil ring are used to reduce the friction without increasing the blow-by and oil consumption. A special low-friction coating is applied on the piston skirt in addition to the optimized skirt profile to have reduced contact pressure. The piston pin is coated with diamond-like carbon (DLC) coating to have the lowest friction.
Technical Paper

Cold Condition N to 1 Gearshift Blockage Analysis in a Manual Transmission Gearbox

2023-11-10
2023-28-0053
Manual transmissions are the preferred transmission for drivers who love sporty gear shifts. Manual transmission vehicles are cheaper, very efficient, and offer quick gear shifts. Worldwide manual transmission contributes to 36.15% and in India it contributes overall 80% of today's market share. The customers expect a very smooth gearshift which is a challenge to achieve in all ambient temperatures. In a gear shift event, the synchronizers synchronize the speed of the gears. The force applied at the gear shift knob, generates the cone torque and stops the rotating input shaft for the Neutral (N) to 1 gear shifting. The early morning gear shifts have high gear shift effort. This effort is getting reduced with the increase in temperature. This is due to the drag in the gearbox which is inevitable. This work focuses on improving the very first gear shift event of N to 1 after the engine crank from cold (8°) to hot (80°) condition.
Technical Paper

Characterization and Durability of Mold-In-Color Engineering Plastics

2019-11-21
2019-28-2542
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC-ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using Fourier Transform infra-red spectrometer (FTIR), differential scanning colorimetry (DSC), universal testing machine (UTM), Izod impact tester and microscope to understand the impact on their chemical and mechanical properties.
Technical Paper

An Evaluation of Gear-Shift Impulse of Two Different Architectures of a High-Torque Capacity Manual Inline Transmission

2023-11-10
2023-28-0119
Manual transmission (MT) is still the most preferred solution for emerging markets due to the lower cost of ownership and maintenance coupled with a higher transmission efficiency. In this regard, continuous improvement of the transmission shift quality is quite essential to meet the growing customer expectations. In the present work, a detailed evaluation of the gear-shift impulse (experienced at the gear-shift knob) is conducted between two different architectures of a manual, high-torque (450 Nm input torque) inline transmission meant for a sports utility vehicle (SUV). The conventional manual inline transmission architecture comprises a common gear pair at the input of the transmission. While this input reduction architecture is the most widely used architecture, having the common gear pair at the output of the transmission is also another option. The synchronizers of the manual transmission need to match the speed of the rotating components just before the gear-shifting event.
Technical Paper

Alternate Manufacturing Process for Automotive Input Shafts

2017-10-13
2017-01-5013
The input shafts are conventionally developed through Hot forging route. Considering upcoming new technologies the same part was developed through cold forging route which resulting in better Mechanical properties than existing hot forging process. It has added benefit of cost as well as environmental friendly. Generally, the part like Input shaft which having gear teeth, splines etc., will be manufactured through Hot forging process due to degree of deformation, availability of press capacity, diameter variations etc., This process consumes more energy in terms of electricity for heating the bar and also creates pollution to the atmosphere. Automotive input shaft design modified to accommodate cold forging process route to develop the shaft with press capacity of 2500T which gives considerable benefit in terms of mechanical and metallurgical Properties, close dimensional tolerances, less machining time, higher material yield when compared to hot forging and metal cutting operation.
X