Refine Your Search

Topic

Search Results

Technical Paper

Virtual Tire Development for New Electric Vehicle through Driver in Loop Approach

2024-04-09
2024-01-2654
In recent years, the push for reduced product development timelines has been more than ever with significant changes in the automotive market. High electrification, intelligent vehicle systems and increased number for car manufacturers are a few key drivers to the same. The front loading of development activities is now a key focus area for achieving faster product development. From vehicle dynamics point of view availability of subjective evaluation feedback plays a key role in optimization various system specifications. This paper discusses an approach for front loading through parallel development of the tire and vehicle chassis system, using advanced simulation and driving simulator technology. The proposed methodology uses virtual tire models which in combination with real-time vehicle model enables subjective evaluation of vehicle performance in driver-in-loop simulators.
Technical Paper

Vehicle Sway Prediction in Hydraulic Circuit Failed Condition on 4 Wheeled Vehicle with ‘X’ Split Brake Configuration

2017-01-10
2017-26-0344
A 4 wheeled vehicle with X-split brake configuration, in hydraulic circuit failed condition will have a behavior of induced sway due to braking force variation in the front and rear diagonally. With increasing vehicle speed, engine power & customer expectations, the situation becomes more critical and challenging in designing a brake system which caters in meeting the homologation requirement at an expense of vehicle sway within controllable limits of driver / customer. This paper proposes a novel approach & methodology to overcome the above situation by predicting the effect of brake force distribution variation on the vehicle swaying behavior during circuit failed braking condition. This study will quantify vehicle sway, caused due to imbalance in brake force distribution during a circuit failed braking event on X Split configuration vehicles.
Technical Paper

Using Vehicle Specifications to Gain Insights into Different Automotive Market Requirements

2020-04-14
2020-01-1283
Determination of vehicle specifications (for example, powertrain sizing) is one of the fundamental steps in any new vehicle development process. The vehicle system engineer needs to select an optimum combination of vehicle, engine and transmission characteristics based on the product requirements received from Product Planning (PP) and Marketing teams during concept phase of any vehicle program. This process is generally iterative and requires subject matter expertise. For example, accurate powertrain sizing is essential to meet the required fuel economy (FE), performance and emission targets for different vehicle configurations. This paper analyzes existing vehicle specifications (Passenger Cars/SUVs - Gasoline/Diesel) in different automotive markets (India, Europe, US, Japan) and aims to determine underlying trends across them.
Technical Paper

Understanding the Stick Slip Behavior of Plastics and Target Setting: An OEM Perspective

2019-06-05
2019-01-1465
Automotive OEMs are aggressively using different materials for interiors due to value proposition and variety of options available for customers in market. Excessive usage of different grade plastics with zero gap philosophy can cause stick slip effect leading to squeak noise. Even though systems and subsystems are designed using best practices of structural design and manufacturing tolerances, extreme environmental conditions can induce contacts leading to squeak noise. Appropriate selection of interface material pairs can minimize the possibilities of squeak conditions. Stick-slip behavior of different plastics is discussed in the present study, along with critical parameters during material compatibility testing in a tribological test stand. Friction coefficient of different material pairs for a defined normal load and sliding velocity are analyzed for patterns to recognize squeaks versus time.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Journal Article

Ultra Flow, High Stiffness Polypropylene Material for Light Weight Exterior Trim Panels

2022-03-29
2022-01-0332
Light weighting is an effective strategy in increasing energy efficiency in the automotive industry. In this paper, mass reduction with cost benefit was targeted in an exterior trim panel. Polypropylene copolymer (PPCP) compound was developed for a large exterior trim panel (1400 X 700mm) having an integrated grill mesh. The part had challenging requirements in terms of slow speed impact, structural durability, dimensional stability, aesthetics, thermal ageing resistance, cold impact resistance, scratch resistance and weathering resistance. By having ultra-high flow behavior, optimum tensile strength, modulus, impact strength and thermal properties, the PPCP compound met the requirements for a thin wall exterior trim panel with a thickness of 2.6mm. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analyzed by using mold flow analysis.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Tractor Transmission Validation for Synchronizer as Skid at Rig Level

2017-01-10
2017-26-0231
Synchronizer design optimization is being prime need for smooth gear shifting and shifting noise. Especially in tractors, synchronizers are subjected to different kinds of loads under various field applications such as Puddling, Cultivation, Haulage, Construction equipment, etc. Also, transmission housings act as a part of chassis of the tractor and hence subjected to sever bending loads. Thus, design & evaluation of tractor transmission, meeting the customer requirement is quite complex. Current trends in product development are driven by shortening development time, reduced cost and first-time-right principle. These above requirements drive tractor manufacturers to put more efforts on delivering quality, robust and reliable transmission assembly in time. Generally the synchronizer packs were validated at sub system level in test rig and further assembled on to the tractor to validate the same in tractor level it requires more time & high cost.
Technical Paper

The Influence of the Material Construction of Leatherette in Squeak Noise Control

2023-04-11
2023-01-0075
PVC (polyvinylchloride) synthetic leather or called leatherette is being widely used for automotive interior applications for seat cover, gear boot, gap hider, steering wheel and roof liner due to their leather like feel and texture, flexibility, sewability, affordability, and wide design freedom. However, the leatherette construction such as top coating, backing fabric and fabric weaving pattern plays a critical role in the finished leatherette performance for the specific application. This study provides the influence of different coating material and different backing fabric in squeak behavior of gear boot PVC leatherette. The squeak behavior was studied by stick slip test as per automotive engineering requirements, and the response of these coating and fabric surface was measured in the form of Risk Priority Number (RPN).
Technical Paper

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Study of Indirect Heat Pump for an Electric Vehicle

2023-09-14
2023-28-0023
Electric Vehicle is the need of an hour, as due to excessive usage of IC Engine vehicles has resulted in the depletion of the ozone layer to a significant level and fuel cost is increasing. With new technologies coming into the market, challenges come hand in hand because of Electric Vehicle. In comparison to IC Vehicle, areas of thermal management or the number of components for which thermal management needs to be done is higher and rather complex. As the thermal management system is the second highest energy consuming source after the powertrain of the electric vehicle, an efficient and reliable design is mandatory to ensure better range in an Electric Vehicle. Thermal Management of the Electric Vehicle has been identified as one of the critical parameters for balancing both cabin comfort as well as Battery temperature. One of the major concerns is meeting the Cabin comfort during colder weather with minimum energy consumption.
Technical Paper

Study of Energy Absorbing Front Cabin Mount, Its Stiffness Balance with Chassis and Test Correlation in Frontal Impact of Commercial Vehicle Cabin

2019-04-02
2019-01-1034
During design and development of a cabin for any commercial vehicle, meeting the strength requirements of front impact as per Indian regulation (AIS-029) is a very critical milestone. AIS-029 regulation consists of three destructive tests, i.e. Front Impact Test (Test A), Roof Strength (Test B) and Rear Wall Strength (Test C). Study of energy absorbing front cabin mount, its stiffness balance with chassis and CAE correlation with physical test is demonstrated in this study. [1]
Technical Paper

Spot Weld Fatigue Correlation Improvement in Automotive Structures Using Stress Based Approach with Contact Modelling

2020-04-14
2020-01-0182
In automotive Body-In-White (BIW) structures, stiffness and the fatigue behavior is greatly influenced by the properties of its joints. Spot welding is one of the most widely used process for joining of sheet metals in BIW. Spot weld fatigue life under Accelerated Durability Test (ADT) is crucial for durability performance of BIW structures. Experience of BIW validations highlighted more number of spot weld failures in CAE when compared to actual tests. Hence, lot of iterations in the form of design modifications are required to be carried out to make these spot welds meet the targets which increases design & development time as well as cost. Current practice uses force-based approach for predicting spot weld fatigue life in CAE. To improve the spot weld fatigue life correlation, extensive study has been carried out on the approaches used for calculating spot weld fatigue life, namely force & stress-based approaches.
Technical Paper

Split Type Crankcase Design for a Single Cylinder LCV Diesel Engine

2017-01-10
2017-26-0040
Serious efforts have been put in space to focus on lowering the fuel consumption and CO2 discharge to the environment from Automotive Diesel Engines. Though more focus is put on material up gradation approach on weight perspective, it is accompanied by undesirable cost increase and manufacturing complexity. As a part of development of a single cylinder engine for a light commercial vehicle application, a unique approach of integrated split type crankcase design is designed and developed. This design have addressed all the key factors on Weight, Cost and Manufacturing perspectives. The split type crankcase configuration, particularly middle-split configuration, integrates the oil sump, front cover and flywheel housing in a single unit beneficial from the point of view of reducing engine weight and thus reducing the manufacturing costs. This crankcase is also excellent from the serviceability point of view.
Technical Paper

Simultaneous Reduction of NOx and PM Emissions through Low Temperature EGR Cooling in Diesel Engines

2014-10-13
2014-01-2803
In this paper, Authors tried to investigate the influence of Low Temperature EGR (LtEGR) on NOx, PM emissions and fuel efficiency in NEDC 120 cycle. Sports Utility Vehicle (SUV) less than 3.5T vehicle selected for investigation of LtEGR. The existing water cooling circuit modified to suitable to handle the LtEGR concept without changing the existing EGR cooler. Cooled EGR technology has two benefits in terms of handling high EGR ratios and more fresh air within the engine displacement. Under this assumption separate LtEGR layout was prepared for the evolution of superior EGR cooling technologies and low pressure EGR.
Technical Paper

Simulations Based Approach for Vehicle Idle NVH Optimization at Early Stage of Product Development

2011-05-17
2011-01-1591
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Selection of Optimal Design Parameters to Achieve Improved Occupant Performance in Frontal Impacts

2013-04-08
2013-01-0756
Crashworthiness enhancement of vehicle structures is a very challenging task during the early design development process. Major factors influencing occupant injury in frontal impact are vehicle front crush space, crash pulse severity, restraint properties and occupant packaging space. This paper establishes a methodology to define suitable criterion that will guide the designers to select the optimal values of the above mentioned parameters during the early phase of the vehicle development. The usage of lumped mass models, pulse characterization techniques were explored to validate the results. Efficient crash energy management, the concepts of ride down and restraint efficiency parameters were also discussed in the paper.
Technical Paper

SCV Chassis Performance Optimization Through Parametric Beam Modelling & Simulation

2021-10-01
2021-28-0183
In automotive product development, design and development of the chassis plays an important role since all the internal and external loads pass through the vehicle chassis. Durability, NVH, Dynamics as well as overall vehicle performance is dependent on the chassis structure. Even though passenger vehicle chassis has a ladder frame or a monocoque construction, small commercial vehicle chassis is a hybrid chassis with the cabin welded to the ladder frame. As mileage is critical for sale of SCVs, making a light-weight chassis is also important. This creates a trade-off between the performance and weight which needs to be optimized. In this study, a parametric beam model of the ladder frame & the cabin of the vehicle is created in COMSOL Multiphysics. The structure has been parameterized into the long member & crossmember geometry & sections. The model calculates the first 12 natural frequencies, global stiffness, and weight.
X