Refine Your Search

Topic

Search Results

Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Valve-Train Dynamics Calculation, Model Simulation and Actual Testing for Friction Reduction to Improve FE

2022-10-05
2022-28-0074
Valve train system is one major contributor to engine overall friction loss and is approximately 30% of total engine friction at lower speed and approximately 20 % at higher engine speed. Valve spring loads (preload and working) are proportional to friction loss of valve train. To optimizing the valve spring design main requirement is valve train perform it function safely at maximum engine cutoff RPM with minimum preload and working load. Robustness and frictional power loss are contradicting requirement, robustness demand high stiffness spring for better valve jump and bounce performance with dynamic safe valve spring design, on the other hand low frictional power loss demand for use of low stiffness spring. To optimize the valve spring stiffness for meeting both the requirement we need accurate prediction of valve spring in design stage and good correlation with testing data to reduce the number of iterations.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
Technical Paper

Study to Improve Engine Efficiency by Reducing Backpressure

2023-04-11
2023-01-0946
Exhaust system of an automobile is primarily employed in automobile to purify exhaust gases and reduce noise due to combustion. However, a side-effect of the above function is the increase in backpressure. As specified in various literatures, an increase in backpressure can lead to a deterioration on engine performance (Power & torque). Benefit of backpressure reduction can be further taken in terms improving the power & torque of engine or improving the fuel economy. With growing concerns related to global warming and CO2 emissions, reducing exhaust back pressure is one of the promising areas in engine design in order to improve the fuel economy of the automobile and achieving carbon neutrality targets. However, reducing the back pressure generally tends to deteriorate the noise attenuation performance of the Exhaust system.
Technical Paper

Study of Electronic Thermostat on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine

2022-10-05
2022-28-0018
In view of global concern for greenhouse gas emissions, need for greener and efficient Engines is increasing. Hence is it imperative that Internal Combustion Engines are improved in terms of efficiency to reduce Greenhouse gas emissions and meet CAFE targets. The cooling system of an ICE plays a major role in a vehicle performance. In this system, the radiator, thermostat, and cooling fan are the main components. Conventional cooling system uses Wax-type thermostat which is activated at specified coolant temperature and maintain same coolant temperature in fully warmed up condition at all engine operating points. Operative temperature selection in Wax-type is trade-off between engine friction & thermal efficiency at lower loads & knocking at higher loads. An electronic thermostat is a good alternative to maintain optimum temperature as per operating point requirement since optimum temperature at different operating points can be different.
Journal Article

Study of Effect of Ethanol Blending on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine and Engine Hardware Optimization Potential

2022-10-05
2022-28-0024
Blending locally produced ethanol with petrol will help India strengthen its energy security. India is making steady progress in raising the share of ethanol having increased to 8.1% in ethanol supply year 2020-21 (Dec-Nov) with target to achieve 10% ethanol blending in the ethanol supply year 2021-22. In future, Government of India is planning to start supply of 20% ethanol blended petrol from Apr’23 and to cover PAN India by Apr’25. Pure ethanol has lower calorific value than Petrol thus ethanol blended petrol will always have calorific value lower than that of petrol thereby deteriorating Fuel economy. On the other hand, ethanol blended petrol will have higher RON compared to petrol. Higher RON reduces knocking tendency thereby providing calibration optimization potential to optimize Spark timing. Optimized spark timing can help in improving Full Load Torque by reducing Phasing losses and operating closer to MBT.
Technical Paper

Simulating Real World Driving: A Case study on New Delhi

2016-02-01
2016-28-0236
In the Indian Context, Fuel Economy of a vehicle is one of key elements while buying a Car. The fuel economy declared by OEMs (Original Equipment Manufacturers) is one of the key indicators while assessing the fuel economy. However it is based on a standard driving cycle and evaluated under standard conditions as mandated by emission legislation. As the driving pattern has a major influence on fuel economy, the objective of this paper is to study real world driving patterns and to define a methodology to simulate a real world driving cycle. A case study was done on Delhi City, by running a fleet of vehicles in different traffic conditions. Thereafter data analysis like acceleration %, specific energy demand per distance, Acceleration vs. Vehicle Speed distribution etc. was done with the help of MATLAB. The final validation of cycle was done by comparing Lab results with on-road Fuel Economy data.
Technical Paper

Road-Lab-Math (RLM) Strategy for Improving Vehicle Development Efficiency

2021-09-22
2021-26-0193
In today’s Indian automotive industry, vehicles are becoming more complex and require more efforts to develop. Also, new and upcoming regulations demand more trials under varied driving conditions to ensuring robustness of emission control. Combined with expectations of customer to get new products more frequently, requires solutions and methods that can allow more trials with required accuracy to ensure compliance to stricter regulation and delivery a quality product. This translates into more trials in less time during the development life cycle. Recently, to overcome above challenge, there has been focus on simulating the vehicles trials in engine bench environment. ‘Road to Lab to Math’ (RLM) is a methodology to reduce the effort of On-road testing and replace it with laboratory testing and mathematical models. Also, on-road testing of prototype vehicles is expensive as it requires physical parts.
Technical Paper

Methodology to Decide Overall Drive Performance Index of Passenger Vehicles

2022-10-05
2022-28-0100
Fun to drive, pick-up of vehicle, high acceleration feeling of vehicle, time to reach max velocities are some parameters prevailing in the passenger vehicle market. In addition to focusing on information about fuel economy declared by manufacturer, the customer also has drivability related criteria in his mind. Although drivability is subjective, it can be judged by using various parameters like maximum speed, pick-up feeling, overtaking acceleration, time to reach 0 – 100 km/h or 0 – 60 km/h, etc. While comparing two vehicles of the same segment, one vehicle may perform better on some of the parameters while losses on others. To decide overall drive performance of a vehicle based on various measured performance related parameters, a methodology is defined. This will help to understand the overall performance of a vehicle holistically and to compare its performance with other vehicles in a better way.
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Journal Article

Improving STL Performance of Automotive Carpets with Multi-layering and Effective Decoupling

2015-01-14
2015-26-0136
Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Hybrid Controls Comparison on HILs Using a Modular Soft Platform

2016-02-01
2016-28-0026
Hybrid Electric Vehicle (HEV) Controls Development is an important aspect to realize the goals of Powertrain Electrification i.e. fuel economy and emission improvement. Keeping that in mind, development engineers need to formulate numerous control strategies. Once the control strategy is evaluated and frozen, it typically does not change from one vehicle model application to another. However, it may happen that Electronic Control Unit (ECU) manufacturer may change depending on the sourcing strategy. Therefore, in order to maintain uniformity, it may be required to compare control strategy of a finished ECU product frozen for one model application to be compared with new ECU sourced through another manufacturer. This paper discusses a methodology to compare control strategy of two ECU’s sourced from different ECU manufacturers with identical control requirements.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Experimental Approach for the Knocking Noise Source Identification & Its Suppression through Lubrication Regime Optimization in Crank-Train of an IC Engine

2022-10-05
2022-28-0067
Over the years, Fuel efficiency and cabin comfort of vehicle has become increasingly important in buying decision and can significantly give competitive edge to the vehicle in marketplace. Weight and friction reduction of rotating and reciprocating components in engines is one of the proven approaches to improve the efficiency of internal combustion engine. To reduce the friction, the general approach is to use low viscosity engine oils, improve the surface finish and reduce the contact area of sliding elements, switch over from sliding contact to rolling contact etc. However sometimes this approach has adverse impact on engine NVH characteristics due to occurrence of abnormal transient noise due to mechanical knocking of the components in specific operating conditions.
Technical Paper

Development of Test Method to Validate Synchronizer Ring Design for Torsional Fluctuations in Manual Transmission

2016-02-01
2016-28-0012
Manual transmissions dominate the Indian market for their obvious benefit of low cost and higher mechanical efficiency resulting in higher fuel economy. Synchronizer system in manual transmission enables smoother and quieter gear shifting. Synchronizer ring is the key element which provides the necessary frictional torque to synchronize the speed of gear and sleeve for smooth shifting. During vehicle running, synchronizer rings are free to rattle inside the indexing clearance. High engine torsional excitation and low clutch dampening can result into increased fluctuation of the input shaft of transmission. High fluctuation or lower contact area of synchronizer ring can lead to damage on the index area. This damage may cause hard gear shifting and gear shift blockage in case of extreme damage.
Technical Paper

Design Considerations for Plastic Fuel Rail and Its Benefits

2014-04-01
2014-01-1041
Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
X