Refine Your Search

Topic

Author

Search Results

Technical Paper

Windshield Defrosting Analysis: A Numerical and Experimental Approach

2019-10-11
2019-28-0115
The outside visibility through the windshield and ORVM visibility through the side glasses are critical for safe driving. The frost deposition on the Windshield and side glasses in the cold climatic condition impairs the outside and ORVM visibility during driving and hence leads to an unsafe driving condition. In India, the regulation AIS-084 governs the defrosting standard. The defrosting performance evaluation by testing cannot be performed at concept stage when the vehicle prototype is not available. It also increases the cost of vehicle development due to increase in the number of prototype used for testing. This paper explains about the in-house developed CFD methodology to evaluate the windshield defrosting performance of the vehicle in the concept stage when no vehicle proto is available and cost of countermeasure for defrosting performance improvent is very less. This methodology is implemented for some of the existing models.
Technical Paper

Weight Optimization of “Cap, Wheel Center” For Passenger Car

2011-04-12
2011-01-0522
In developing countries steel wheel is generally used in the low end passenger cars. Steel wheel has a hole at center, known as wheel bore which give the provision for tightening & un-tightening of axle nut. Due to this hole, the surrounding parts are visible which reduces the aesthetic appearance of the wheel. To cover the center portion of the wheel, “Cap, Wheel Center” also called as “Center Cap” is used, which is an aesthetic oriented part as shown in Figure 1. Center Cap is designed in such a manner that it can be easily removed & re-fitted during the service of vehicle. This paper explains the systematic methodology to optimize the weight of the “Center Cap” without compromising the performance & aesthetic appearance. Various analytical calculations have been done to achieve base line value of the design which was further justified using CAE (computer aided engineering) to optimize the performance & weight.
Technical Paper

Vehicular Cabin Noise Source Identification and Optimization Using Beamforming and Acoustical Holography

2014-04-01
2014-01-0004
The automobile market is witnessing a different trend altogether - the trend of shifting preference from powerful to fuel efficient machines. Certain factors like growing prices of fuel, struggling global economy, environmental sensitiveness and affordability have pushed the focus on smaller, efficient and cleaner automobiles. To meet such requirements, the automobile manufacturers, are going stringent on vehicle weights. Using electric and hybrid power-plants are other options to meet higher fuel efficiency and emission requirements but significant cost of these technologies have kept their growth restricted to only few makers and to only few regions of the globe. Optimizing the vehicle weight is a more attractive option for makers as it promises lesser time to market, is low on investment and allows use of existing platforms.
Technical Paper

The Aerodynamic Development of the New BREZZA and FRONX

2024-04-09
2024-01-2535
MSIL (Maruti Suzuki India Limited), India’s leading carmaker, has various SUVs (Sports Utility Vehicle) in its model lineup. Traditionally, SUVs are considered to have a bold on-road presence and this bold design language often deteriorates aerodynamic drag performance. Over the years, the demand for this segment has significantly grown, whereas the CAFE (Corporate Average Fuel Economy) norms have become more stringent. To cater this growing market demand, MSIL planned for two new SUVs: (1) New BREZZA - A bolder design with similar targeted aerodynamic performance compared to its predecessor (BREZZA-2016) and (2) FRONX - A new cross-over SUV vehicle targeted best-in-class aerodynamic performance in this category at MSIL. This paper illustrates the aerodynamic development process for these two SUVs using CFD (Computational Fluid Dynamics) and full scale WTT (Wind Tunnel Test).
Technical Paper

Supervisory Control Strategy for Mild Hybrid System - A Model Based Approach

2013-04-08
2013-01-0503
In this paper, a mild hybrid system is studied for Indian drive conditions. The study is focused to first come up with detailed component sizing through simulation. Different features of mild hybrid system are studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. Model based development approach has been employed to develop a supervisory control strategy for such a system. Model based design saves time and cost as it gives flexibility to the control engineer to validate the control design at an early stage of development. The supervisory control strategy is first tested in a simulated environment and then, on a vehicle. To prove the system function, a full hybrid vehicle is experimented as a mild hybrid configuration. Experiments are conducted on the test vehicle over MIDC (certification cycle) to understand the impact of mild hybridization on fuel economy and tail pipe emissions
Technical Paper

Study to Improve Engine Efficiency by Reducing Backpressure

2023-04-11
2023-01-0946
Exhaust system of an automobile is primarily employed in automobile to purify exhaust gases and reduce noise due to combustion. However, a side-effect of the above function is the increase in backpressure. As specified in various literatures, an increase in backpressure can lead to a deterioration on engine performance (Power & torque). Benefit of backpressure reduction can be further taken in terms improving the power & torque of engine or improving the fuel economy. With growing concerns related to global warming and CO2 emissions, reducing exhaust back pressure is one of the promising areas in engine design in order to improve the fuel economy of the automobile and achieving carbon neutrality targets. However, reducing the back pressure generally tends to deteriorate the noise attenuation performance of the Exhaust system.
Technical Paper

Study for Manufacturing a Cost Effective, Light Weight, Single Piece Injection Molded Spoiler

2019-01-09
2019-26-0162
Today automotive sector has become very dynamic. There is renewed emphasis on safety through adoption of new regulations, electric vehicles are on the verge of replacing ever evolving engine technology, emission norms are getting stringent year by year & several companies are trying to make vehicles more efficient by adoption of new light weight or high strength materials and altering manufacturing methods. In one of the new vehicle programs, there was focus on vehicle styling. In order to improve the styling, back door spoiler was to be considered from design stage itself. Back door spoiler is added in high speed vehicles for creating a downward force to improve the vehicle hold on road. However, nowadays in passenger vehicles that purpose has been subsided and spoiler is given in automotive vehicles for aesthetics or giving vehicle a sporty appearance. For instance in our case it was given to augment aesthetics. This would have resulted in additional cost and weight.
Technical Paper

Resonator Design Study to Reduce Pressure Pulsation from CNG Injector

2024-01-16
2024-26-0233
With the advent of upcoming stringent automobile emission norms globally, it is inevitable for original equipment manufacturers (OEMs) to shift towards greener alternatives. Use of compressed natural gas (CNG) is a preferred solution as it is a relatively clean burning fuel and it doesn’t have significant loss in vehicle efficiency and performance. Modern day customers are more aware and sensitive towards vehicle noise, vibration and harshness (NVH). Hence, OEMs must cater to this demand through optimized design and layout. In a passenger vehicle, CNG is stored at high pressure and delivered to injectors after pressure reduction at a regulator. During engine idling, the opening and closing motion of the CNG injector generates back pulsation and these pulsations cause vibrations which may propagate through other components in the delivery path and perceived as noise inside vehicle cabin.
Technical Paper

Passenger Car Front Air - Dam Design Based on Aerodynamic and Fuel Economy Simulations

2013-01-09
2013-26-0063
Computational Fluid Dynamics (CFD) is used extensively in the optimization of modern passenger car to meet the ever growing need of higher fuel economy, better engine and underbody cooling. One of the way to achieve better fuel economy is to reduce the vehicle overall resistance to flow, know as drag. Vehicle drag is a complex phenomenon governed by vehicle styling, component shape, layout and driving velocity and road conditions. To reduce the drag a lot of aero-parts are used these days such as air-dam, skirts, spoiler, undercover, dams etc. However the design of these aero-parts must be optimized to get the desired result as their addition alone does not guarantee improvement in performance. This paper aims at studying the effect of air-dam height and position on vehicle aerodynamics. Also the effect of air-dam addition was verified using fuel economy simulations.
Technical Paper

Optimal Torque Handling in Hybrid Powertrain for Fuel Economy Improvement

2013-01-09
2013-26-0068
In this work, a parallel full Hybrid Electric Vehicle (HEV) was optimized to further lower its carbon footprint without opting for any additional hardware change. The study was focused to first recognize the system efficiency of the HEV and identify its low efficiency points over the MIDC. Thereafter, different functions of the HEV were studied for their individual and cumulative contribution in the fuel economy improvement over the base non-hybrid vehicle. This, along with the low system efficiency points helped in identifying the potential areas for improvement in fuel economy. With changes in calibration and control strategies resulting in an optimal torque handling between the E-machine and the ICE, it was established through simulation and subsequent experiments conducted on chassis dynamometer, that the fuel economy of the HEV tested can be improved with the performance remaining unchanged and emissions meeting regulatory requirements.
Technical Paper

Model Based Design of xEV Powertrain Controls

2012-01-09
2012-28-0023
Powertrain Control development has gone through many changes in terms of process, tools and practice at all OEM's across the geography. This is mainly driven by increased number of powertrain components for control, shorter development schedules, cost control, and the need to realize the potential of electronic control to increase the performance, efficiency, safety and comfort. With the significant advancement in Powertrain Controls and additions of electronic functions, it has become imperative to automate the controller development process in the V-cycle to reduce the time and make the process more efficient while detecting any logic failures upfront at the early stage of the development cycle. Traditional practices and tools of defining the controls cannot meet new requirements. Model Based Design (MBD) approach is a promising solution to meet the critical needs of powertrain control engineering to define the control logic and validate.
Technical Paper

Investigation on the Effect of Coolant Temperature on the Performance and Emissions of Naturally Aspirated Gasoline Engine

2011-01-19
2011-26-0089
Downsizing of engines is becoming more popular as manufacturers toil for increased fuel economy. Due to the downsizing of engines, Brake Mean Effective Pressure (BMEP) tends to increase, which in turn increases the heat release from engine. This necessitates the need for optimizing cooling system in order to get higher engine output and lower emissions to comply with stringent emission norms. In earlier engines, thermo-siphon principle was used with water as the coolant. This has been replaced in modern engines with pressurized cooling system with coolants like ethylene glycol mix. Along with the conventional objective of increased material durability with the optimized engine cooling system, it has been found that there is an improvement in the engine output due to increased charging efficiency. This paper describes the effect of engine coolant temperature on performance, emission and efficiency of a three-cylinder naturally aspirated spark ignited engine.
Technical Paper

Integrated Approach for Accelerated Fatigue Testing of Resonating Structures

2014-04-01
2014-01-0821
The durability evaluation of overhanging components of a vehicle (Ex: horn, radiator) is a challenge to durability engineers as resonance plays an important role in determining their fatigue life. As resonance cannot be avoided always, it is desirable to develop methods to evaluate life of the component in the presence of resonance. Though the existing vibration test standards suggest test profiles to evaluate resonance failures, there are cases in which, these methods do not yield the proving ground results. This may lead to unnecessary overdesign or unrealistic failures. In such cases it is suggested to generate a sweep endurance test procedure customized to the proving ground or actual roads. This paper studies a methodology for generating a sweep endurance test procedure for evaluation of resonating components. Responses like stress and accelerations were measured in test components in proving ground. Contribution of each frequency band towards overall damage is determined.
Journal Article

Influence of Low Viscosity Lubricating Oils on Fuel Economy and Durability of Passenger Car Diesel Engine

2012-01-09
2012-28-0010
Continuously rising fuel prices and global concern on climate change have resulted in a need to deliver vehicles with increased fuel economy. This has to be achieved without compromising on performance, durability and cost. Passenger car manufacturers are looking at various ways to maximize fuel economy. Major part of fuel saving can be tapped from engine itself. This can be done by activities on engine as below: Improving overall combustion efficiency and hence BSFC Efficient thermal management. Weight reduction of engine parts or complete downsizing Hybridization. Reducing engine losses i.e. parasitic losses from auxiliaries and frictional losses. This paper is focused on the reduction of engine frictional losses (FMEP) through the use of low viscosity lubrication oils. Various factors in lubrication oil contribute to friction. Experimental approach to quantifying the effect of different parameters of lubrication oil on total engine friction is presented.
Technical Paper

Improving Side Crash Performance of a Compact Car via CAE

2014-04-01
2014-01-0546
The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted.
Technical Paper

Improving Offset Crash Performance and Injury Mitigation via Multi-Body Simulation and Structural CAE

2014-04-01
2014-01-0939
Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests.
Technical Paper

Front-Loading: Virtual Validation and Calibration on LABCAR

2024-01-16
2024-26-0247
The advent of BS6 coupled with RDE emission norms has increased the development efforts and costs due to the shear amount of testing and validation on real engines and vehicles which are necessitated by these stringent norms. Front-loading of tasks by moving actual vehicle and engine tasks on to virtual setup, will reduce the development efforts and costs significantly. This front-loading of tasks on to a LABCAR would need real time and highly accurate plant models, tools to parameterize these plant models and accurate data driven models to predict dynamic parameters like emissions. In this collaborative work between Maruti Suzuki India Ltd and ETAS India, ETAS VVTB and ICE plant models were parameterized with the data generated on engine test with ASCMO Global DoE test plan by using ASCMO MOCA. The ASCMO Global test plan also ensures the coverage of data points across the entire engine operating space. These plants models were optimized to an accuracy level of more than 95%.
Technical Paper

Enhanced Light Weight Frontal Crash Box Design for Low Speed and Insurance Tests

2013-01-09
2013-26-0023
Single body architecture designed for various global markets and subjected to varied load cases is a challenge for Body in White (BIW) engineers. Optimization of structural design to meet regulatory, insurance and assessment requirements is an iterative and time consuming task. With focus on reduction of vehicle's damageability and ease of repairability Original Equipment Manufactures (OEM), insurance companies and Research Council for Automobile Repairs (RCAR) [1] are striving for better designs. A space constraint crash box structure installed behind the bumper plays a significant role in absorption of energy, before transmitting to longitudinal rails. In this study, crashworthiness of a multipurpose crash box for a hatch segment vehicle is presented with the various design of experiments conducted with a focus on light weighting, cost and ease of manufacturing.
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Effect of Environmental Factors on the Function of an Automotive Luggage Cover of a Passenger Vehicle – A Case Study

2024-01-16
2024-26-0228
The Indian passenger vehicle market has grown by more than 40% by volume in the last decade and has reached a record high in FY23. This has created a more diverse and demanding customer base that values interior design and quality. The modern customer expects a high level of aesthetics and sophistication in their vehicle interiors - including in the luggage area. The Luggage Cover (Parcel Tray) is a component in the luggage area of a passenger vehicle that is used to conceal the luggage & improve its aesthetics. The cover is generally made of thermoplastic material with rotating hinges and is held in its place by the compression from the back door, which is frequently opened and closed. The parts that connect the cover to the door (usually an elastomer interface on the thermoplastic tray) tend to change over a period due to climatic conditions and leads to rattling concerns over a period.
X