Refine Your Search

Topic

Author

Search Results

Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

Thermodynamic Loss at Component Interfaces in Stirling Cycles

1992-08-03
929468
The paper considers the thermodynamic irreversibility in Stirling cycle machines at the interface between components with different thermodynamic characteristics. The approach of the paper is to consider the simplest possible cases and to focus on the factors that influence the thermodynamic losses. For example, an ideal adiabatic cylinder facing an ideal isothermal heat exchanger is considered. If there is no mixing in the cylinder (gas remains one dimensionally stratified), there will be no loss (irreversibility) if the gas motion is in phase with the gas pressure changes. If there is a phase shift, as required to have a network for the cylinder, there will be a loss (entropy generation) because the gas will not match the heat exchanger temperature. There will also be a loss if the gas in the cylinder is mixed rather than stratified. Similar simple interface conditions can be considered between components and interconnecting open volumes and between heat exchangers and regenerators.
Technical Paper

The Use of Semi-Solid Rheocasting (SSR) for Aluminum Automotive Castings

2003-03-03
2003-01-0433
Semi-solid metal (SSM) casting has long been identified as a high-volume process for producing safety-critical and structural automotive castings, but cost and complexity issues have limited its widespread commercial acceptance. Rheocasting, an SSM process that creates semi-solid slurry directly from liquid metal, eliminates the cost disadvantages of the process. However, the majority of rheocasting processes are complex and difficult to operate in the foundry environment. Recent work at MIT has led to the fundamental discovery that application of heat removal and convection as a molten alloy cools through the liquidus creates a non-dendritic, semi-solid slurry. A new process based on this understanding, S.S.R.™ (Semi-Solid Rheocasting), simplifies the rheocasting process by controlling heat removal and convection of an alloy during cooling using an external device. Solution heat treatable castings have been produced in a horizontal die casting machine with the S.S.R.™ process.
Technical Paper

The Theory of Cost Risk in Design

1999-03-01
1999-01-0495
In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.
Technical Paper

The Study of Friction between Piston Ring and Different Cylinder Liners using Floating Liner Engine - Part 1

2012-04-16
2012-01-1334
The objective of this work was to develop an experimental system to support development and validation of a model for the lubrication of two-piece Twin-Land-Oil-Control-Rings (hereafter mentioned as TLOCR). To do so, a floating liner engine was modified by opening the head and crankcase. Additionally, only TLOCR was installed together with a piston that has 100 micron cold clearance to minimize the contribution of the skirt to total friction. Friction traces, FMEP trend, and repeatability have been examined to guarantee the reliability of the experiment results. Then, engine speed, liner temperature, ring tension, and land widths were changed in a wide range to ensure all three lubrication regimes were covered in the experiments.
Technical Paper

The Production System Design and Deployment Framework

1999-05-11
1999-01-1644
This session keynote paper presents a framework for designing and deploying production systems. The framework enables the communication and determination of objectives and design solutions from the highest level to the lowest level of a manufacturing enterprise. The design methodology ensures that the physical implementation, called Design Parameters (DPs), meets the objectives or Functional Requirements (FRs) of the production system design. This paper presents a revolutionary approach to determine the objectives and the implementation of a “lean” production system design for a manufacturing business as guided by the design axiom of independence.
Technical Paper

The Mars Gravity Biosatellite: Innovations in Murine Motion Analysis and Life Support

2005-07-11
2005-01-2788
The MIT-based Mars Gravity Biosatellite payload engineering team has been engaged in designing and prototyping sensor and control systems for deployment within the rodent housing zone of the satellite, including novel video processing and atmospheric management tools. The video module will be a fully autonomous real-time analysis system that takes raw video footage of the specimen mice as input and distills those parameters which are of primary physiological importance from a scientific research perspective. Such signals include activity level, average velocity and rearing behavior, all of which will serve as indicators of animal health and vestibular function within the artificial gravity environment. Unlike raw video, these parameters require minimal storage space and can be readily transmitted to earth over a radio link of very low bandwidth.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

The Importance of Takt Time in Manufacturing System Design

1999-05-10
1999-01-1635
Lean production has greatly influenced the way manufacturing systems should be designed. One important aspect of lean production is takt time. Takt time relates customer demand to available production time and is used to pace the production. This paper applies the manufacturing system design and deployment framework to describe the impact of takt time on both the design and the operation of a manufacturing system. The goal of this paper is to illustrate the relevant relationships of takt time to overall system design.
Technical Paper

THE VOLUMETRIC EFFICIENCY OF FOUR-STROKE ENGINES

1952-01-01
520259
PARAMOUNT among the problems relating to the efficiency of the internal-combustion engine is that of breathing capacity, or air consumption. Considering volumetric efficiency to be the most valuable parameter in an analytical or experimental approach to this problem, the authors of this paper have devoted several years of study to this factor in relation to 4-stroke engines. The studies have resulted in extensive findings, some of which have already been published. This paper attempts to bring together in readable form the results of the work to date, including both published and unpublished data. The authors discuss in detail the effect of volumetric efficiency on operating variables, piston speed, inlet-valve flow capacity, cylinder design, and size. They introduce a gulp factor, the inlet-valve Mach index, and explain how this factor can be used to guide engineers.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Soot and Ash Deposition Characteristics at the Catalyst-Substrate Interface and Intra-Layer Interactions in Aged Diesel Particulate Filters Illustrated using Focused Ion Beam (FIB) Milling

2012-04-16
2012-01-0836
The accumulation of soot and lubrication-derived ash particles in a diesel particulate filter (DPF) increases exhaust flow restriction and negatively impacts engine efficiency. Previous studies have described the macroscopic phenomenon and general effects of soot and ash accumulation on filter pressure drop. In order to enhance the fundamental understanding, this study utilized a novel apparatus that of a dual beam scanning electron microscope (SEM) and focused ion beam (FIB), to investigate microscopic details of soot and ash accumulation in the DPF. Specifically, FIB provides a minimally invasive technique to analyze the interactions between the soot, ash, catalyst/washcoat, and DPF substrate with a high degree of measurement resolution. The FIB utilizes a gallium liquid metal ion source which produces Ga+ ions of sufficient momentum to directionally mill away material from the soot, ash, and substrate layers on a nm-μm scale.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Technical Paper

Scavenging the 2-Stroke Engine

1954-01-01
540258
THE indicated output of a 2-stroke engine is primarily dependent upon the success with which the products of combustion are driven from the cylinder and are replaced by fresh air or mixture during the scavenging period. Such replacement must, of course, be accomplished with a minimum of blower power. This paper deals with various aspects of 2-stroke research conducted at M.I.T. during the past 10 years. Among the subjects discussed are the methods used in the prediction and measurement of scavenging efficiency, and the effect of engine design and operating variables on the scavenging blower requirements as reflected by the scavenging ratio.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

Recommendations for Real-Time Decision Support Systems for Lunar and Planetary EVAs

2007-07-09
2007-01-3089
Future human space exploration includes returning to the Moon and continuing to Mars. Essential to these missions is each planetary extravehicular activity, or EVA, where astronauts and robotic agents will explore lunar and planetary surfaces. Real-time decision support systems will help these explorers in efficiently planning and re-planning under time pressure sorties. Information and functional requirements for such a system are recommended and are based on on-going human-computer collaboration research.
Technical Paper

Predicting Product Manufacturing Costs from Design Attributes: A Complexity Theory Approach

1996-02-01
960003
This paper contains both theorems and correlations based on the idea that there is a uniform metric for measuring the complexity of mechanical parts. The metric proposed is the logarithm of dimension divided by tolerance. The theorems prove that, on the average, for a given manufacturing process, the time to fabricate is simply proportional to this metric. We show corrleations for manual turning (machine lathe process), manual milling (machine milling process), and the lay-up of composite stringers. In each case the accuracy of the time estimate is as good as that of traditional cost estimation methods, but the effort is much less. The coefficient for composite lay-up compares well to that obtained from basic physiological data (Fitts Law).
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Journal Article

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends

2011-04-12
2011-01-1305
The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under cold fast idle condition. For E10 to E85, PN increases modestly when the ECT is lowered. The distributions, however, are insensitive to the ethanol content of the fuel. The PN for E0 is substantially higher than the gasohol fuels at ECT below 20° C. The total PN values (obtained from integrating the PN distribution from 15 to 350 run) are approximately the same for all fuels (E0 to E85) when ECT is above 20° C. When ECT is decreased below 20° C, the total PN values for E10 to E85 increase modestly, and they are insensitive to the ethanol content. For E0, however, the total PN increases substantially. This sharp change in PN from E0 to E10 is confirmed by running the tests with E2.5 and E5. The midpoint of the transition occurs at approximately E5.
X