Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Performance Model for the Texaco Controlled Combustion, Stratified Charge Engine

1976-02-01
760116
A model has been developed to predict the performance of the Texaco Controlled Combustion, Stratified Charge Engine starting from engine geometry, fuel characteristics and the operating conditions. This performance model divides the engine cycle into the following phases: Intake, Compression, Rapid Combustion, Mixing-Dominated Expansion, Heat-Transfer Dominated Expansion and Exhaust. During the rapid combustion phase, the rate of heat release is assumed to be controlled by the rate of fuel injection and the air-to-fuel ratio. The burning rate in the mixing controlled stage appears to be dominated by the rate of entrainment of the surrounding gas by the plume of burning products and this rate is assumed to be controlled by the turbulent eddy entrainment velocity. A plume geometry model has been developed to obtain the surface area of the plume for entrainment during the mixing dominated phase.
Technical Paper

Fast Sampling Valve Measurements of Hydrocarbons in the Cylinder of a CFR Engine

1981-02-01
810149
A time resolved study of the unhurned hydrocarbons in the cylinder of a spark ignition engine has been made. A fast acting needle value was used to sample the gas near the cylinder wall opposite the spark plug. The volume sampled was measured by water displacement and the total hydrocarbon mole fraction was measured with a flame ionization detector. Measurements were made as a function of crank angle over the entire engine cycle for a range of equivalence ratios, inlet pressures, spark advances, inlet temperatures, and EGR fractions. Average hydrocarbon concentrations in the exhaust were also measured. Two possible sources of post combustion hydrocarbon in the cylinder were considered: thin wall quench layers and fine crevices into which a flame cannot propagate. The results suggest that crevices were the source of the hydrocarbon. Models for predicting hydrocarbon from both quench layers and crevices were developed and are presented.
X