Refine Your Search

Topic

Author

Search Results

Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Technical Paper

Visualization Study on Lubricant Oil Film Behavior around Piston Skirt

2011-08-30
2011-01-2119
Understanding of the oil film formation mechanism around a piston skirt is very important to reduce the friction loss at piston skirt. We have investigated lubricant oil film behavior around piston skirt which is affected by piston slap under motoring condition. In this study, a cylinder liner of a commercial engine is displaced with a quartz cylinder. Photographic observations of oil film behavior between the cylinder liner and the piston skirt were performed with two kinds of methods; direct monochromatic photography and LIF (Laser Induced Fluorescence) image using a high speed camera. The oil film distributions were determined from oil boundary observed by the direct photography, and oil film thickness was estimated from the LIF intensity. Differences of the oil film distributions and the oil film thickness depending on piston shapes were investigated for four types of pistons.
Technical Paper

Thermal Fluid Analysis By a Mesh Free Simulation - Part 2 Analysis of the Indoor Climate in a Vehicle Cabin Based on the 3D-CAD Model

2011-10-06
2011-28-0136
The thermal fluid field in a vehicle cabin model is analyzed by the mesh free method as well as mentioned in the Part 1. This paper focuses on the steady state indoor climate in the vehicle cabin including the effect of the buoyancy, the heat generation of the driver and heat conduction through the vehicle body surface under the maximum air-cooling condition soaked in a climate chamber in the summer condition for the demonstration of the mesh free method without not only the deformation of the 3D-CAD model but mesh generation. The solar radiation distribution and heat generation through the exhaust pipe from the engine room are simply included in the analysis. Simulated results are compared with experiments in the conditions of both moving and idling states. As a result, no significant difference in air temperature between simulation and experiments can be obtained in both conditions.
Technical Paper

The Development of the Advanced Protocol for Automotive Local Area Multiplexing Network (Advanced PALMNET)

1994-03-01
940365
In order to expand the applicable range of in-vehicle LANs down to popular cars, drastic cost reduction is essential. In addition, an in-vehicle LAN with high transmission rate and advanced functioning is extremely important for the further spreading of vehicle electronics intended to enhance vehicle intelligence. We developed the Protocol for Automotive Low and Medium Speed Network (PALMNET) as an in-vehicle LAN system and put it into practical use in 1990. Based on this, we developed a new communication protocol and three ICs for an in-vehicle LAN called the Advanced Protocol for Automotive Local Area Multiplexing Network (Advanced PALMNET), which satisfies the above-mentioned requirements and covers the medium-to-low transmission rate (up to 125kbps) to high rate (up to 1Mbps).
Technical Paper

The Development of Carbon-Based Friction Material for Synchronizer Rings

1999-03-01
1999-01-1059
Today, most widely used synchronizer rings (SNRs) are made of brass (brass SNR). The development of superior SNR to brass SNR has been required for both shift feeling and durability, which are two important requirements for SNRs. Carbon-based friction material (carbon material) is selected to develop superior friction material to brass because carbon material is one of the most durable materials for an application of clutch and brake. Carbon material is placed on the friction surface of SNR (carbon SNR). The structure of carbon material, kinds of raw materials and their combination ratio are selected and optimized. The carbon SNR is confirmed to have higher performance than brass SNR for both shift feeling and durability. At present, our carbon SNRs have been introduced into pickup trucks and SUVs in USA.
Technical Paper

The Characteristics of Pressure Wave Supercharged Small Diesel Engine

1989-02-01
890454
The supercharged diesel engine with a pressure wave supercharger (PWS) has achieved a high torque over the entire speed range in a quick response while maintaining the low fuel consumption as a small diesel engine. This is the result of adopting a high efficient supercharger based on the unique construction of PWS. Lower inlet and exhaust flow resistance, earlier inlet-close timing, etc., are specially important for engine with PWS. Another advantage is less unturned fuel emissions.
Technical Paper

The Characteristics of Fuel Consumption and Exhaust Emissions of the Side Exhaust Port Rotary Engine

1995-02-01
950454
Mazda has been pursuing the research of side exhaust porting for its rotary engine in an effort to improve the engine's fuel efficiency and exhaust emissions characteristics. The side exhaust porting configuration provides greater flexibility in setting port timing and shape, as compared to the peripheral exhaust porting configuration, which is in use in the current-generation rotary engines; the side exhaust porting configuration enables the selection of a port timing more favorable to reduced fuel consumption and exhaust emissions. The side exhaust port rotary engine used in this research has its exhaust port closure timing around the top dead center (TDC) and has no intake-exhaust timing overlap. As a result, burnt gasses entering the next cycle of combustion are reduced, thus enhancing combustion stability; also, the air-fuel ratio can be set leaner for improved fuel consumption.
Technical Paper

Surrounding Combustion Process (SCP) - New Concept for Lean Burn Engine

1992-02-01
920058
Both NOx and unburned HC were reduced by changing the direction of the flame propagation. It is generally said that the optimum ignition position of spark ignition engine is in the center of combustion chamber. However by igniting arround the chamber and propagating the flame toward the center, a smooth heat release pattern due to the decrease in the flame area and a decrease in the unburned gas entering the ring crevise can be anticipated. These effects of this combustion process, which was named the surrounding combustion process (SCP), were experimntally confirmed using the constant volume combustion vessels and the spark ignition engine equipped with six spark plugs per cylinder. Next, the steps for decreasing the number of ignitions TCre considered, and additional three spark plugs for SCP were installed in the four valve pentroof combustion chamber. With this engine, the NOx reduction and the capability of SCP to further improve the lean burn engine fuel economy were confirmed.
Technical Paper

Superior Color Matching of Fascia and Body

1987-02-01
870108
To coat flexible parts such as R-RIM Urethane Fascia baked at low temperatures, a different painting approach from one for steel parts is employed. Since paint color differences between the fascia and the body would downgrade the product, a color matching technique is required. For better color matching, matching of color shades was attempted with improvement of paint resin, optimal pigment blending and analysis of how color is affected by varying conditions. Application of a primer for finishing has brought about the desired paint film distinctness. Introduced was also the high weatherablilty paint for plastic parts. All such techniques were utilized on R-RIM Urethane Fascia to achieve high-grade color matching.
Technical Paper

Study on Torque Converter Circuit Profile

1992-02-01
920765
The pressure balance method, a theoretical analysis applicable to torque converter design, was employed to enhance torque converter performance. Using this method to investigate the influence of design factors on performance, a flow path shape which reduces oil flow loss was clarified and a higher performance torque converter was developed.
Technical Paper

Spot Friction Welding of Aluminum to Steel

2007-04-16
2007-01-1703
Spot friction welding (SFW) is a cost-effective spot joining technology for aluminum sheets compared with resistance spot welding (RSW) [1]. In this study, coated mild steel was spot friction welded to 6000 series aluminum using a tool with shoulder diameter of 10 mm and welding conditions of 1500-2000 rpm and time of 5 s. Testing showed that tensile shear strength increased as the solidus temperature of the coating on the steel decreased. Microstructure characterizations of steel/Al joint interfaces showed that zinc from the coatings was incorporated into the stir nuggets and that intermetallic phases may have formed but not in continuous layers. Some Al-Zn oxides that appeared to be amorphous were also found in the joint interfaces.
Technical Paper

Sequential Twin Turbocharged Rotary Engine of the Latest RX-7

1994-03-01
941030
Many sports cars have recently appeared on the market, and people's interest in and requirements for the cars are continuing to grow. The RX-7 was developed to be a first-class sports car that Mazda can be proud of worldwide as a trend leader for sports cars in the '90s. Among many innovations, its engine is the fruit of all the efforts Mazda has done to realize a “pure RE sports car” that takes every advantage of the rotary engine. This paper describes the aim of the development, main specifications, performance characteristics and major new technologies of the engine.
Technical Paper

Planar Measurements of OH Radicals in an S.I. Engine Based on Laser Induced Flourescence

1994-03-01
940477
The planar laser induced fluorescence (PLIF) technique was applied to two dimensional visualization of OH radicals in a combustion flame. A frequency doubled Nd:YAG laser pumped dye laser was used to form a laser light sheet which excited the OH X2Π-A2Σ transition. A fluorescence image of the OH radical and a visible image of a combustion flame were simultaneously imaged by a pair of CCD cameras with image intensifiers. Measurement of the OH radical in the combustion flame could be carried out by using this PLIF technique without Mie scattering lights from soot particles and other optical disturbances. The PLIF technique was employed to study the OH radical in the combustion chamber of a spark ignition (S. I.) engine using gasoline as fuel. Measurements of the OH radical fluorescence were carried out under various operating conditions of mass burned fraction, swirl ratio and air-fuel ratio.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

Mechanism of Improving Fuel Efficiency by Miller Cycle and Its Future Prospect

1995-02-01
950974
We have introduced a supercharged Miller Cycle gasoline engine into the market in 1993 as an answer to the requirement of reduction in CO2 emission of vehicles. Improvement in the fuel economy of a supercharged Miller Cycle engine is achieved by the reduction of friction loss due to a smaller displacement. The biggest problem of a conventional supercharged engine is knocking. In order to avoid the knocking, lower compression ratio, which accompanies lower expansion ratio, has been adopted by the conventonal engines and achieved insufficient fuel economy improvement. The Miller Cycle obtains superior anti-knocking performance as well as lowering compression ratio, while keeping the high expansion ratio. The decreased friction loss by the smaller displacement has completely lead to the improvement of fuel economy.
Technical Paper

Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation

1995-02-01
950741
Recently, an audible clattering noise has been noticed in some vehicles during cold engine starts, mainly in the U.S. The clattering is referred to by various names, such as “carbon knock,” “carbon rap,” “mechanical knock” and “combustion chamber deposit interference (CCDI).” CCDI is believed to be caused by the deposit formation in the combustion chamber. In the research effort described here, CCDI was successfully reproduced in a 2.5-liter multipoint injection engine with a polyolefin amine gasoline additive. It was determined that the CCDI was caused by mechanical contact between the piston top and the cylinder head deposits. The vibration due to CCDI originated mainly at the thrust side of the piston right after top-dead-center on compression stroke and was characterized by a high frequency response. Combustion chamber deposit (CCD) formation depends on many factors, including gasoline additives.
Technical Paper

Measurement of Oxygen Storage Capacity of Three-Way Catalyst and Optimization of A/F Perturbation Control to Its Characteristics

2002-03-04
2002-01-1094
In order to study alternate methods of Air Fuel ratio (A/F) perturbation for maximizing three-way catalyst conversion efficiency, two methods for measuring the Oxygen Storage Capacity (OSC) of Catalyst were developed on an engine test bench. The first is to measure just the break-through Perturbing Oxygen Quantity (POQ, which is defined as the product of A/F amplitude, perturbation period and gas flow), and the second is to measure the response delay of the rear A/F sensor, which has been improved to be very similar to the former. Then, the OSC values of many catalysts were investigated with different perturbation parameters. The results show that OSC would not be affected by amplitude, period of perturbation and gas flow, and that the best conversion efficiency is obtained when the value of POQ is about 1/2 of the value for OSC. These results suggest that the best way to control perturbation is to keep POQ at 1/2 of OSC by setting perturbation parameters.
X