Refine Your Search



Search Results

Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 6 - Numerical Analysis of Heat Transfer Characteristics by CRI

In the present study, numerical simulation coupling convection and radiation in vehicle was done to analyze the formation of the temperature field under the non-uniform thermal condition. The scaled cabin model of simplified compact car was used and the thermal condition was determined. The fore floor, the top side of the inst. panel, the front window and the ceiling were heat source. The lateral side walls were cooled by the outdoor air and the other surfaces were adiabatic. It is same with the experimental condition presented in Part 5. In order to analyze the individual influence of each heat source, Contribution Ratio of Indoor climate (CRI) index was used. CRI is defined as the ratio of the temperature rise at a point from one individual heat source to the temperature rise under the perfect mixing conditions for the same heat source.
Technical Paper

The Evaluation of the Influence of Vehicle Crashworthiness and Interior Parts on Occupant Injury

In order to secure effective occupant protection at vehicle collisions, it is necessary to conduct close examination into vehicle crash characteristics as well as interior parts, etc. This paper analyzes the behavior of a HYBRID III dummy restrained by three point seatbelt using MVMA2D computer simulation program at a 35 mph vehicle frontal barrier crash. As a result, it is found for good agreement between experiment and simulation that the exact input data of successive toeboard intrusion play an important role. As for the parametric study on vehicle crashworthiness, the authors propose the convenient method to represent the actual crash pulse by two simplified trapezoids. Then using these trapezoids, the parametric study clarifies the influence of vehicle deformation characteristics as well as the interior parts on dummy injury.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
Technical Paper

Simultaneous Observation of Combustion in Optical Rotary Engine by Bottom View and Side View

Combustion behavior in Rotary Engine (RE) is quite different from that in conventional reciprocating engines. Therefore, it is important to observe the combustion in RE. In the previous studies, an optical RE was developed, which enabled the observation of the flame propagation in the rotor rotating direction (side view). In the present study, modification was made to the optical RE so that the observation of the flame propagation in the rotor width direction (bottom view) became possible. By using two high-speed cameras, the combustion in RE was observed by bottom view and side view simultaneously. Consequently, it was found that the flame propagation in the rotor width direction is also important for better engine performance as well as that in the rotor rotating direction.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence

To investigate NO formation in a combustion flame, PLIF (Planar Laser-Induced-Fluorescence) technique was applied to measure the NO fluorescence distribution in a constant-volume combustion chamber and in a sparkignition engine. The NO fluorescence distribution was taken by an image intensified CCD camera. In the constant-volume combustion chamber, the high NO fluorescence intensity was concentrically observed in the thin flame zone along the flame front. In postflame gas behind the flame zone, the NO fluorescence was widely distributed with weak intensity. In the case of the engine, the fluorescence was distributed in the broad flame zone. The fluorescence intensity had high value near the flame front, and decreased from the flame front to the postflame gas. As the equivalence ratio was changed, the fluorescence intensity reached maximum value at slightly lean condition.
Technical Paper

Optimized Restraint Systems for Various-Sized Rear Seat Occupants in Frontal Crash

Of the injuries sustained by belted rear occupants in a frontal collision event in Japan, the neck and the head are the regions of the body most likely to be injured, while children and female occupants are accounting for the highest rate of injuries. For the purpose of reducing rear seat occupant injuries, the occurrence mechanism of neck and head injuries is clarified by sled tests with the current rear seat belt system. When a high load is applied to the occupant via the seat belt, the occupant experiences sudden deceleration of the chest, resulting in a great relative velocity difference between the head and the chest. This causes injury to the occupant's neck and head. To reduce occupant injuries, therefore, it is important to minimize the relative velocity difference by control of belt load.
Technical Paper

Optimization of the Side Airbag System Using MADYMO Simulations

Continuous improvement of side airbag safety performance is an important step because it is associated with many public domain tests and regulations. Thus, occupant restraint with a side airbag is critical and it is necessary to develop tools that can be utilized to help in design of side airbags. Though many papers on side impact safety have been published, only a few papers are related to MADYMO simulations of side airbags. This paper describes an improved injury prediction and optimization approach using a MADYMO model for side impact. This model consists of 3 parts: dummy, trim and airbag in FEM. In this study, a side impact with a ES-2, EuroSID-2, was simulated in MADYMO as follows: First, component tests were conducted for trim and airbag respectively to establish correlation. Second, these component models were then integrated into a MADYMO model, which has high correlation with a crash simulator that is capable of replicating physical vehicle tests.
Technical Paper

Investigation of Acceleration Performance Feeling on a Rotary Engine Sports Car with Driving Simulator

Subjective evaluation tests of “Acceleration Performance Feeling” with a driving simulator have been carried out on a rotary engine sports car. Additionally, although the test condition is limited, a test on an in-line four-cylinder engine sedan has been carried out. Influencing factors were analyzed through the experimental design and the influences of acceleration, gas pedal controllability, engine sound and their interactions were quantified. As the result, it has been found that the interactions must be considered in addition to main effect of each factor to improve users' evaluation especially on a rotary engine sports car. Furthermore, it is concluded that influencing factors are different between a rotary engine sports car and an in-line four-cylinder engine sedan.
Technical Paper

Introduction of Gear Noise Reduction Ring by Mechanism Analysis Including FEM Dynamic Tuning

Reduction of transmission error by gear tooth profile optimization and tuning of gear resonance modes are known as effective methods for gear noise reduction. This paper concentrates on structuring a process for reducing gear noise using the latter method. The procedure comprises a study of gear noise mechanism from transmission error to radiation noise, an application of Steyer's method in gear frequency analysis and implementation of an invented device called “noise reduction ring”. This inexpensive and practical ring reduces gear noise drastically by 10dB, which is predicted by the simulation and verified by the experiment.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Effect of subframe structure on compatibility performance

With an aim to improve compatibility performance, vehicle-to-vehicle frontal impact simulations have been conducted between large car and small car. Focusing on sub-frame structure that disperses applied force with multiple load paths, a large saloon car with sub-frame was selected and three different front structures were studied: original, forward-extended sub-frame, and original with 25%-stiffness reduced structures. The types of collision contained four different crash modes in a combination of lateral overlap rate difference and side member height difference. As a result, it was found that the front structure with forward-extended sub-frame improved aggressivity by preventing override effect through structural interaction enhancement. Height of Force (HOF) was also improved.
Technical Paper

Effect of Cooling of Burned Gas by Vertical Vortex on NOx Reduction in Small DI Diesel Engines

A new nitrogen oxide (NOx) reduction concept is suggested. A strong vertical vortex generated within the combustion bowl can mix hot burned gas into the cold excess air at the center of the combustion-bowl. This makes the burned gas cool rapidly. Therefore, it is possible to reduce NOx, which would be produced if the burned gas remained hot. In this paper the effect was verified with a 3D-CFD analysis of spray, air, combustion gas, and thermal efficiency as well as experiments on a 4-cylinder 2.0-liter direct injection diesel engine. The results confirmed that the vertical vortex was able to be strengthened with the change of spray characteristics and the combustion bowl shapes. This strengthened vertical vortex was able to reduce NOx by approximately 20% without making smoke and thermal-efficiency worse. Above results proved the effectiveness of this method.
Technical Paper

Driver Behavior Under a Collision Warning System - A Driving Simulator Study

Collision warning systems are expected to be an effective countermeasure to reduce traffic accidents; however there have been relatively few studies on the effects of such warning systems on the driver's collision avoidance behavior. In this study, a driving simulator which had a large motion system was used, and 45 subjects experienced crash imminent situations in which the preceding cars suddenly decelerated while the subject looked off the road. Analyzing the subjects' collision avoidance behaviors, it was found that the braking response time and the number of simulated collisions were substantially decreased with collision warnings. Furthermore, potential reduction of rear-end collisions on the road was estimated by modeling the driver's braking response.
Technical Paper

Development of Fuel Sloshing Evaluation Technique upon Crash Using Fluid-Structure Interaction Simulation

In the development of fuel tank systems, it is important to maintain fuel system integrity even if a car accident occurs. When a fuel tank undergoes a sudden change in velocity, the fuel starts to move and deforms the tank walls and baffle plates, and then the deformation changes the flow pattern of fuel. Because interaction of fuel with tank components is the main cause of fuel spillage upon crash, it is important to predict complex fluid-structure interaction responses at an early stage of crash safety development with a multiphysics simulation. Development of the multiphysics simulation technique was conducted stepwise by examining “fluid motion” and “tank deformation.” First, a sled test of a rigid-wall tank with observation window was conducted to evaluate the fluid motion inside the tank. A numerical model was developed based on an ALE (Arbitrary Lagrangian Eulerian) algorithm for the fluid and a Lagrangian algorithm for the structure.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Computational Study of the Wake Structure of a Simplified Ground-vehicle Shape with Base Slant

Three-dimensional flows around a vehicle-like bluff body (Ahmed's body) in ground proximity were computed by directly integrating the governing unsteady, incompressible Navier-Stokes equations. A well-established finite-difference procedure was used. The basic equations were formulated in a generalized coordinate system. A third-order upwind scheme was applied to discretize the equations, and the numerical solutions were acquired without any explicit turbulence models. Computations were performed at a high Reynolds number, Re=106 (based on the body length). In order to investigate the influence of the base slant angle, computations were performed for three base slant angles, i.e., 12.5 °, 25 °and 30 °. Extensive flow visualizations, using state-of-the-art computer graphics, were carried out. The present numerical results were found to be in broad agreement with the experiments of Ahmed.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.