Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 1 Airflow Velocity Measurement with PIV

2008-04-14
2008-01-0732
In the present study, a model experiment is performed in order to clarify the ventilation characteristics of car cabin. This study also provides high precision data for benchmark test. As a first step, the ventilation mode is tested, which is one of the representative air-distribution modes. Part 1 describes the properties of the flow field in the cabin obtained by the experiment. Part 2 describes the ventilation efficiencies such as the age of air by using trace gas method. The properties of flow field are measured using particle image velocimetry (PIV). The mean velocity profiles, the standard deviation distribution, and the turbulence intensity distribution are discussed. The brief comparison between experiments and predictions of computational fluid dynamics (CFD) is also presented. In the comparison between experiment and CFD, the results showed similar flow field.
Technical Paper

Thixomolding® of Magnesium Automotive Components

1998-02-23
980087
Thixomolding® produces net-shape parts from Magnesium alloys in a single step process involving high speed injection molding of semi-solid thixotropic alloys. A description of the process and status of commercial developments will be presented.. The mechanical properties and microstructures of Thixomolded® AZ-91D magnesium materials will be presented. Tensile strengths of semi-solid AZ-91D at both room temperature and elevated temperatures ( 373K, 423K) are compared with die cast AZ-91D. Data on enhanced creep properties of Thixomolded® AZ91-D alloy relative to die cast AZ-91D will be examined with respect to relative changes in microstructural features. Controlling the percent solids in the semi-solid state prior to injection molding can lead to improved creep performance for use in net-shape automotive components.
Technical Paper

The Complex Cornering Compliance Theory and its Application to Vehicle Dynamics Characteristics

2002-03-04
2002-01-1218
The Complex Cornering Compliance (Complex CC) theory is a method to cascade desired vehicle dynamics characteristics into suspension / steering system applying the Equivalent Cornering Power based on a single track model. Complex CC is used to find front / rear slip angle and time constant after converting the system elements into complex numbers as “slip angle per 1g (gravity) of lateral acceleration and occurrence time”. This enables an analysis of the contribution rate of the slip angle and time constant on the system elements and the impact on lateral force.
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

2007-07-23
2007-01-1850
An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
Technical Paper

Spray and Evaporation Characteristics of Multi-Hole Injector for DISI Engines - Effect of Diverging Angle Between Neighboring Holes

2009-04-20
2009-01-1500
Experimental and computational studies were carried out to characterize the spray development and evaporation processes of multi-hole injector for direct injection spark ignition (DISI) engines. The main injector parameter to be investigated in this study is a diverging angle between neighboring two holes. In the experimental study, the influence of the diverging angle on evaporation process of fuel spray from two-hole injector was investigated using Laser Absorption Scattering (LAS) measurement. Smaller diverging angle causes larger spray tip penetration because the momentum of the spray from one hole emphasizes another, when two spray merge to one. Moreover, spray tip penetration decreases at certain diverging angle due to the negative pressure region between two sprays. Mechanisms behind the above spray behaviors were discussed using the detailed information on the spray and ambient gas flow fields obtained by the three dimensional computational fluid dynamics (CFD).
Technical Paper

Spray Guided DISI Using Side Mounted Multi-Hole Injector

2007-04-16
2007-01-1413
Concept of the spray guided direct Injection spark ignition (DISI) was studied to improve the performance of wall-guided DISI. Focusing the effect of multi-hole injector location either centrally-mounted or side-mounted, mixture distribution and ignitability was studied. Computational Fluid Dynamics (CFD) modeling was applied to investigate the history of mixture, ignitable mixture existence around the spark plug in light load condition and homogeneity in full load condition. CFD results showed that side-mounted injection has an advantage over centrally-mounted injection in terms of mixture stability around the spark plug, although the slight disadvantage in homogeneity in full load condition. Side-mounted injection was selected because of robust ignitability potential and further experimental investigation was conducted. Stable combustion window against injection and ignition timing was investigated in experimentally.
Technical Paper

Review of Aerodynamic Noise Prediction Using CFD

1999-03-01
1999-01-1126
Recently, computational fluid dynamics (CFD) has made great progress. This paper reviews published papers on aerodynamic noise simulated by CFD and studies to what level CFD can predict aerodynamic noise for basic models and for applied models of automobiles. Based on noise generation mechanisms, aerodynamic noise is basically classified into two types, that is, noise induced by two-dimensional flow and by three-dimensional flow. As typical examples of noise generated by two-dimensional flow, wind throb at opened sliding roof, edge tone at the end of liftgate and aeolian tone generated by a cylindrical antenna are simulated by several computational schemes. As typical examples of three-dimensional flow, noise generated by A-pillar longitudinal vortex and noise from a side view mirror are computed by using a wing model and a actual vehicle, respectively.
Technical Paper

Influence of Combustion Mode on Heat Loss Distribution in Gasoline Engines

2023-09-29
2023-32-0075
As a technology to reduce the heat loss of engines, heat insulation coating to the surface of combustion chamber has been received a lot of attention. In order to maximize the thermal efficiency improvements by the technology, it is important to clarify the location where heat insulation coating can reduce heat loss more effectively, considering the impact on abnormal combustion etc. In this study, transient behavior of wall heat flux distribution on the piston was analyzed using 3D Computational Fluid Dynamics (CFD) for three combustion modes (spark ignition combustion (SI), homogenous charge compression Ignition (HCCI) and spark controlled compression ignition (SPCCI)).
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 2nd Report: Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation

2009-04-20
2009-01-0006
In the present study, two kinds of simplified vehicle models, which can reproduce flow structures around the two sedan-type vehicles in the previous study, are constructed for the object and the unsteady flow structures are extracted using Large-Eddy Simulation technique. The numerical results are validated in a stationary condition by comparing the results with a wind-tunnel experiment and details of steady and unsteady flow characteristics around the models, especially above the trunk deck, are investigated. In quasi- and non- stationary manner with regard to vehicle pitch motion, unsteady flow characteristics are also investigated and their relations to an aerodynamic stability are discussed.
Technical Paper

Evaluation of Wind Noise Sources Using Experimental and Computational Methods

2006-04-03
2006-01-0343
Experiment and CFD have been performed to clarify the distribution of wind noise sources and its generation mechanism for a production vehicle. Three noise source identification techniques were applied to measure the wind noise sources from the outside and inside of vehicle. The relation between these noise sources and the interior noise was investigated by modifying the specification of underbody and front-pillar. In addition, CFD was preformed to predict the noise sources and clarify its generation mechanism. The noise sources obtained by simulation show good agreement with experiment in the region of side window and underbody.
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

An Approach for Improving Correlation of Solid Finite Element Models

2005-05-16
2005-01-2370
The quest to simulate noise problems has led to the building of larger and more detailed finite element models in order to perform vibration solutions to higher frequencies. This leads to the building of solid finite element models of complex geometries, such as castings, which might previously have contained less detail or even been built with shell elements. Unfortunately, detailed geometric representations used to build models do not always agree with as built parts and lead to discrepancies between analysis results and test data. This paper presents an approach that reduces the time and cost necessary to identify these differences.
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Technical Paper

Aerodynamic Pitching Stability of Sedan-Type Vehicles Influenced by Pillar-Shape Configurations

2013-04-08
2013-01-1258
The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations.
X