Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Statistical Process Control: Real-Time Data Acquisition and Response

1994-10-01
941840
The paper describes the development, implementation, and benefits of a real-time statistical process control (SPC) data acquisition and response system. The system has been installed on four production CNC riveters and provides enhanced, in-process control of automated fastening machine performance. Each system employs commercially available SPC components. These components, coupled with real-time data acquisition computers, have been integrated with the riveter's controllers and sensors to detect process anomalies as they occur. Real-time knowledge of fastening machine performance is the benefit of this system's approach to SPC. Fastener quality is ensured during the fastening cycle, not after sequences (and perhaps hundreds of rivets) have been completed.
Technical Paper

Space Station Freedom Resource Nodes Internal Thermal Control System

1993-07-01
932148
This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports, and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2.
Technical Paper

Space Constructible Radiator (SCR) Life Test Heat Pipe Performance Testing and Evaluation

1994-06-01
941437
The Space Constructible Radiator (SCR) Life Test heat pipe performance testing is currently conducted at NASA/Johnson Space Center as part of the Advanced Technology Development Program. The SCR is a dual passage, monogroove heat pipe radiator designed and manufactured by Grumman Aerospace for NASA. The heat pipe has many aerospace applications since it can transport a large amount of heat with a compact lightweight design. As the micro-meteoroid/orbital debris environment worsens, it may be advantageous to add the heat pipe radiator to the Space Station's thermal control system. The SCR Life Test has been operating over the last 10 years and will continue until the year 2000. The overall heat transfer coefficient has decreased from 792 W/K (1500 Btu/Hr-°F) to 475 W/K (900 Btu/Hr-°F) but appears to have stabilized. This paper summarizes the SCR Life Test setup and the test results to date.
Technical Paper

Microgravity Payload Vibration Isolation System Development

1994-06-01
941416
The objective of this paper is to present results of MDA's payload vibration isolation system research and development program. A unique isolation system with passive or active capabilities designed to provide isolation down to 10-6 g was developed and tested in our 1-g testbed under simulated microgravity conditions. Fluid and electrical umbilicals are also included in the system. The established isolation system performance requirements were met and the testbed data were used to refine our analytical models for predicting flight performance. Simulations using an updated Space Station configuration showed that the payload microgravity requirement can be met by upgrading the hardware from laboratory to flight tolerances and improving the control system design. The next step is to flight test the systems verified in 1 g on the STS/SPACEHAB using a middeck locker size development unit.
Technical Paper

Charlotte™ Robot Technology for Space and Terrestrial Applications

1995-07-01
951520
A novel robot architecture has been developed which promises cost savings in a variety of applications in Space and on Earth. Utilizing cables in order to effect motion in a general workspace provides large weight savings, as well as high end effector stiffness. The architecture has been built and successfully tested in space. The capability of the robotic system to actuate those switches, dials, and buttons expected in space environments, as well as to read displays and transmit video to earth for operator feedback have been proven, and are discussed herein.
X