Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Vehicle Side Slip and Roll Angle Estimation

2016-04-05
2016-01-1654
Vehicle dynamics estimation has been the subject of study for some years now. If on-board vehicle control systems can be provided with information such as side slip angle, lateral force etc. then stability of the vehicle can be improved. To estimate these dynamic variables different observers have been used e.g., sliding mode, fuzzy logic, neural networks etc. In this article the authors propose an extended Kalman filter to estimate vehicle side slip angle. Roll angle is estimated using vertical loads as input. First, a linear Kalman filter is used to filter out the vertical forces and estimate roll angle. This information is then used to estimate the vehicle side slip angle. To take into account the nonlinearities concerning lateral vehicle dynamics, Pacejka magic formula is used to model lateral forces. Estimated results are then compared with simulations, showing good accuracy.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Technical Paper

Turbulence Spectrum Investigation in a DI Diesel Engine with a Reentrant Combustion Bowl and a Helical Inlet Port

1996-10-01
962019
The frequency spectral structure of turbulence spatial components was investigated in the cylinder of an automotive diesel engine with a high-squish reentrant in-piston bowl of the conical type and a helical inlet port. A sophisticated HWA technique using single- and dual-sensor probes was applied for instantaneous air velocity measurements along the injector axis at practical engine speeds, up to 3000 rpm, under motored conditions. The investigation was carried out for both cycle-resolved and conventional turbulence components, as were determined by different wire orientations, throughout the induction, the compression and the early stage of the expansion stroke. The anisotropy of turbulence spectral structure and its temporal evolution during the engine cycle were examined by evaluating the autospectral density functions and the time scales of each turbulence component in consecutive correlation crank-angle intervals.
Technical Paper

Time-Frequency Spectral Stucture of Turbulence in an Automotive Engine

1992-02-01
920153
The results of an experimental study on the statistical structure of turbulence in an automotive engine are reported, with specific reference to the time-frequency domains. Autocorrelation and autospectral density coefficients were evaluated in consecutive crank-angle intervals throughout the induction and compression strokes. Eulerian time scales were obtained on the analogy of both the micro and integral time scales of turbulence for stationary flows. The spatial distribution of the turbulence structure was investigated in the combustion chamber of a diesel engine with a shallow in-piston bowl and two tangential intake ducts. The study was carried out for different swirl flow conditions, produced by deactivating one intake duct and/or by changing the engine speed. The velocity data were acquired using an advanced HWA technique, under motored conditions.
Technical Paper

The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines

2006-04-03
2006-01-0437
The potential of an electric assisted turbocharger for a heavy-duty diesel engine has been analyzed in this work, in order to evaluate the turbo-lag reductions and the fuel consumption savings that could be obtained in an urban bus for different operating conditions. The aim of the research project was to replace the current variable geometry turbine with a fixed geometry turbine, connecting an electric machine which can be operated both as an electric motor and as an electric generator to the turbo shaft. The electric motor can be used to speed up the turbocharger during the acceleration transients and reduce the turbo-lag, while the generator can be used to recover the excess exhaust energy when the engine is operated near the rated speed, in order to produce electrical power that can be used to drive engine auxiliaries. In this way the engine efficiency can be improved and a kind of “electric turbocompounding” can be obtained.
Technical Paper

The Influence of Supersonic Stream on the Dependence "Amplitude-Frequency" of Nonlinear Vibrations of Flexible Plate

2013-09-17
2013-01-2160
The stability analysis of plates and shells in high speed flow deals with the determination of the flutter instability boundary. A linear analysis is made using the basic principles of the theory of aero-elasticity of isotropic bodies, the theories of flexible plates, the stability equations and associated boundary conditions obtained through a linear formulation. Herein, the nonlinear stability of flexible plate immersed in a high speed gas flow is considered. The model takes into account quadratic and cubic aerodynamic nonlinearities as well as cubic geometric nonlinearities. It is shown that the inclusion of quadratic aerodynamic nonlinear components can lead to the appearance of “amplitude-frequency” phenomena in both the pre-critical as well as in the post-critical flow speed regimes. The influence of the free stream flow speed on the “amplitude-frequency” dependence phenomena is also presented.
Technical Paper

The Impact of WLTP on the Official Fuel Consumption and Electric Range of Plug-in Hybrid Electric Vehicles in Europe

2017-09-04
2017-24-0133
Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Structural and Aerodynamics Analysis on Different Architectures for the Elettra Twin Flyer Prototype

2009-11-10
2009-01-3128
This paper deals with the design and development of an innovative airship concept which is remotely-controlled and intended to be used for monitoring, surveillance, exploration and reconnaissance missions. Two potential solutions have been analyzed: the first consists of a double-hull configuration, characterized by the presence of a primary support structure connected by appropriated bindings to a couple of twin inflatable hulls. The second architecture is a soap-shaped exoskeleton configuration which features a single inflated section, incorporating two separate elements held internally by a system of ribs. The aim of this study is to analyze and compare the two configurations, to determine the most appropriate solution in terms of performance, cost and maneuvering capabilities
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Speed and Acceleration Impact on Pollutant Emissions

1996-05-01
961113
This paper intends to analyze the simultaneous impact of speed and acceleration on exhaust pollutant emissions. For this purpose, actual driving recording were used. Kinematic sequences were randomly selected amongst the recorded data, in order to constitute a representative set of driving conditions. For each sequence, average levels of speed and positive acceleration were calculated. Instantaneous and integrated pollutant emissions were calculated using an existing emission model, developed for calculating pollutant emissions and fuel consumption as functions of instantaneous speed and acceleration. This model is based on instantaneous emission measurements on a chassis dynamometer using actual driving cycles, over a sample of 150 European cars. Emissions of CO, CO2, HC, NOx were analyzed considering the average speed and positive acceleration, for different categories of vehicles Diesel, conventional and catalyst vehicles.
Technical Paper

Speed Dependence of Turbulence Properties in a High-Squish Automotive Engine Combustion System

1996-02-01
960268
The variation of turbulent flow quantities with engine speed has been investigated in the combustion chamber of an automotive diesel engine with a high-squish conical-type in-piston bowl and one helicoidal intake duct, at speeds covering the wide range of 600-3000 rpm, under motored conditions. The investigation had the main purpose of studying the engine speed effect on the structure of both cycle-resolved and conventional turbulence over the induction, the compression and the early stage of the expansion stroke. The low frequency component of the fluctuating motion was also investigated.
Journal Article

Sideslip Angle Estimation of a Formula SAE Racing Vehicle

2016-04-05
2016-01-1662
A method for estimating the sideslip angle of a Formula SAE vehicle with torque vectoring is presented. Torque vectoring introduces large tire longitudinal forces which lead to a reduction of the tire lateral forces. A novel tire model is utilized to represent this reduction of the lateral forces. The estimation is realized using an extended Kalman filter which takes in standard sensor measurements. The developed algorithm is tested by simulating slalom and figure eight maneuvers on a validated VI-CarRealTime vehicle model. Results indicate that the algorithm is able to estimate the sideslip angle of the vehicle reliably on a high friction surface track.
Technical Paper

Shock Absorber Modeling and Experimental Testing

2007-04-16
2007-01-0855
Simulation is becoming the fundamental tool to design the main components of a vehicle. The paper describes the shock absorber model which was implemented by the Vehicle Dynamics Research Team of Politecnico di Torino. It is a modular model which can be adopted both for mono-tube and twin-tube shock absorbers. It can be used at different levels of approximation, as a function of the kind of user and his/her targets. The main data which have to be inserted in the model are fluid properties, the basic dimensions of the component and the characteristics of the orifices of the shock absorber. An experimental test bench was conceived to obtain the diagrams plotting flow rate through an orifice of a shock absorber versus the pressure drop between input and output ports. The test rig and the procedure to perform the experimental tests and insert the results in the shock absorber model are described in detail.
X