Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Comparison of Spray Characteristics in Butane and Diesel Fuels by Numerical Analysis

2000-10-16
2000-01-2941
The spray characteristics of n-butane were analyzed numerically using KIVA-3V code and compared with those of diesel under the same boundary conditions. The transient behavior of hollow cone spray was calculated not only in a constant volume chamber under various ambient conditions, but also in a premixed compression ignition engine. The spray characteristics were evaluated in terms of spray tip penetration and droplet size distribution. Various atomization sub-models such as TAB, Wave breakup and Wave-KH (Kelvin-Helmholtz) model were implemented in the code and validated by comparison with experimental data. The results show that mixture formation for butane proceeds faster than diesel fuel primarily due to a higher evaporation rate caused by butane's higher diffusivity in air. Furthermore, in a premixed compression ignition engine, the mixture of butane becomes more homogeneous than diesel by the end of compression stroke.
Technical Paper

Combustion Process Modeling using a Reduced Mechanism in an LPG Lean Burn SI Engine

1999-10-25
1999-01-3481
Flame propagation characteristics, in a heavy-duty type LPG lean burn SI engine, were investigated by simulation methodology, using the global one step and the ten step chemical kinetic reaction mechanisms, respectively. The swirl ratio and equivalence ratio were varied to investigate their effects on flame front speed. The effect of increased swirl intensity on flame speed was very minor at ranges of equivalence ratio of this study. Flame front shape, however, was affected by swirl intensity. Circular flame front formed for a higher swirl ratio, which is in a qualitative accordance with that of measurements. Comparison between calculation and measurements of flame propagation characteristics shows a good agreement for both the global one step and the ten step chemical kinetic model. This work concludes that the reduced chemical kinetic reactions, consisting of ten steps, is useful for flame propagation study in an LPG SI engine.
Technical Paper

Chemical Kinetic Study of a Cetane Number Enhancing Additive for an LPG DI Diesel Engine

2000-03-06
2000-01-0193
The oxidation mechanism of DTBP (Di-tertiary-butyl peroxide) and its role in butane oxidation have been investigated, as it pertains to the development of an LPG DI diesel engine. Ignition delay contours were analyzed to investigate the role of DTBP (ϕ≈0.2 to the total oxygen) in butane oxidation. At higher pressure and lower temperature regions, it was apparent that the addition of DTBP significantly enhances the ignition delay of butane, whereas at lower pressures and higher temperatures, this effect diminishes. Results of this study showed that the role of DTBP to enhance the ignition delay of the base fuel is through rapid heat release, rather than by radicals produced by decomposition during the base fuel ignition delay. Formaldehyde is a principal species involved in reactions for heat release in the higher pressure lower temperature region, comparable to diesel engine operating conditions.
X