Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Investigation of the Impact of Impingement Distance on Momentum Flux Rate of Injection Measurements of a Diesel Injector

2015-04-14
2015-01-0933
Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens.
Technical Paper

Investigation of Multi-Hole Impinging Jet High Pressure Spray Characteristics under Gasoline Engine-Like Conditions

2016-04-05
2016-01-0847
Impingement of jet-to-jet has been found to give improved spray penetration characteristics and higher vaporization rates when compared to multi-hole outwardly injecting fuel injectors which are commonly used in the gasoline engine. The current work studies a non-reacting spray by using a 5-hole impinging-jet style direct-injection injector. The jet-to-jet collision induced by the inwardly opening nozzles of the multi-hole injector produces rapid and short jet breakup which is fundamentally different from how conventional fuel injectors operate. A non-reacting spray study is performed using a 5-hole impinging jet injector and a traditional 6-hole Bosch Hochdruck-Einspritzventil (HDEV)-5 gasoline direct-injection (GDI) injector with gasoline as a fuel injected at 172 bar pressure with ambient temperature of 653 K and 490 K and ambient pressure of 37.4 bar and 12.4 bar.
Technical Paper

High Pressure Impinging Spray Film Formation Characteristics

2018-04-03
2018-01-0312
Fuel film formed in the spray-piston or cylinder wall impingement plays a critical role in engine performance and emissions. In this paper, the fuel film formation and the relevant film characteristics resulting from the liquid spray impinging on a flat plate were investigated in a constant volume combustion vessel by Refractive Index Matching (RIM) technique. The liquid film thickness was firstly calibrated with two different proportional mixtures (5% n-dodecane and 95% n-heptane; 10% n-dodecane and 90% n-heptane by volume) pumped out from a precise syringe to achieve an accurate calibration. After calibration, n-heptane fuel from a side-mounted single-hole diesel injector was then injected on a roughened glass with the same optical setup. The ambient temperature and the plate temperature are set to 423 K with the fuel temperature of 363 K.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Effect of Combustion on Diesel Spray Penetrations in Relation to Vaporizing, Non-Reacting Sprays

2016-10-17
2016-01-2201
Extensive studies have addressed diesel sprays under non-vaporizing, vaporizing and combusting conditions respectively, but further insights into the mechanism by which combustion alters the macroscopic characteristics including the spray penetration and the shape of the spray under diesel engine conditions are needed. Contradictory observations are reported in the literature regarding the combusting diesel spray penetration compared to the inert conditions, and it is an objective of this study to provide further insights and analyses on the combusting spray characteristics by expanding the range of operating parameters. Parameters varied in the studies are charge gas conditions including oxygen levels of 0 %, 15%, 19%, charge densities of 22.8 & 34.8 kg/m3, and charge temperatures of 800, 900 & 1050 K for injection pressures of 1200, 1500, and 1800 bar with a single-hole injector with a nozzle diameter of 100 μm.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Journal Article

Comparison of Direct-Injection Spray Development of E10 Gasoline to a Single and Multi-Component E10 Gasoline Surrogate

2017-03-28
2017-01-0833
Optical and laser diagnostics enable in-depth spray characterization in regards to macroscopic spray characteristics and in-situ fuel mixture quality information, which are needed in understanding the spray injection process and for spray model development, validation and calibration. Use of fuel surrogates in spray researches is beneficial in controlling fuel parameters, developing spray and combustion kinetic models, and performing laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of a single and multi-component surrogate in comparison to a gasoline with 10% ethanol under gasoline direct injection (GDI) engine conditions. In addition, the effect of fuel tracers on spray evolution and vaporization is also investigated. Both diethyl-methyl-amine/fluorobenzene as a laser-induced exciplex (LIEF) fluorescence tracer pair and 3-pentanone as a laser-induced fluorescence (LIF) tracer are examined.
Technical Paper

Characterization of Impingement Dynamics of Single Droplet Impacting on a Flat Surface

2019-01-15
2019-01-0064
The liquid fuel spray impingement onto surfaces occurs in both spark ignited and compression ignited engines. It causes a fundamental issue affecting the preparation of air-fuel mixture prior to the combustion, further, affecting engine performance and emissions. To better understand the underlying mechanism of spray interaction with a solid surface, the physics of a single droplet impact on a heated surface was experimentally investigated. The experimental work was conducted at four surface temperatures where a single diesel droplet was injected from a precision syringe pump with a specific droplet diameter and impact velocity. A high-speed camera was used to visualize the droplet impingement process. Images from the selected test condition (We = 52 to 925, Re = 789 to 3330 based on initial droplet impingement parameters) were analyzed to qualify the impinging outcomes and quantify the post-impingement characteristics.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
X