Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

The Filtration and Particulate Matter Oxidation Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter: Experimental and 1-D 2-Layer Model Results

2005-04-11
2005-01-0949
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was calibrated and validated for this CPF with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR and using ULSF. The CPF used is a NGK filter having a cordierite substrate with NEX catalyst type formulation (54% porosity, 15.0 μm mean pore diameter and 50 gms/ft3 Pt). The filter was catalyzed using a wash coat process. The model was used to predict the pressure drop, particulate mass retained inside the CPF, particulate mass filtration efficiency and concentration downstream of the CPF with agreement between the experimental and simulated data.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

The Effects of Two Catalyzed Particulate Filters on Exhaust Emissions from a Heavy Duty Diesel Engine: Filtration and Particulate Matter Oxidation Characteristics Studied Experimentally and Using a 1- D 2- Layer Model

2005-04-11
2005-01-0950
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was used along with dilute emission data to characterize two catalyzed particulate filters (CPFs) having different catalyst loading and catalyst application processes. The model was calibrated and validated with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR with different fuels for the two different CPFs. The two different catalyzed particulate filters were CPF III (5 gms/ft3 Pt) and CPF V (50 gms/ft3 Pt). Both the CPFs had cordierite substrates with CPF III and CPF V had MEX and NEX catalyst type formulation respectively. The CPF III filter was catalyzed using a solution-impregnated process while the CPF V filter was catalyzed using a wash coat process.
Technical Paper

The Effects of Natural Aging on Fleet and Durability Vehicle Engine Mounts from a Dynamic Characterization Perspective

2001-04-30
2001-01-1449
Elastomers are traditionally designed for use in applications that require specific mechanical properties. Unfortunately, these properties change with respect to many different variables including heat, light, fatigue, oxygen, ozone, and the catalytic effects of trace elements. When elastomeric mounts are designed for NVH use in vehicles, they are designed to isolate specific unwanted frequencies. As the elastomers age however, the desired elastomeric properties may have changed with time. This study looks at the variability seen in new vehicle engine mounts and how the dynamic properties change with respect to miles accumulated on fleet and durability test vehicles.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on the Emissions from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0875
The objective of this research was to study the effects of a CCRT®, henceforth called Diesel Oxidation Catalyst - Catalyzed Particulate Filter (DOC-CPF) system on particulate and gaseous emissions from a heavy-duty diesel engine (HDDE) operated at Modes 11 and 9 of the old Environmental Protection Agency (EPA) 13-mode test cycle Emissions characterized included: total particulate matter (TPM) and components of carbonaceous solids (SOL), soluble organic fraction (SOF) and sulfates (SO4); vapor phase organics (XOC); gaseous emissions of total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), nitric oxide (NO) and nitrogen dioxide (NO2), oxygen (O2) and carbon dioxide (CO2); and particle size distributions at normal dilution ratio (NDR) and higher dilution ratio (HDR). Significant reductions were observed for TPM and SOL (>90%), SOF (>80%) and XOC (>70%) across the DOC-CPF at both modes.
Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on Particle Size Distribution from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0877
The effect of a Johnson Matthey catalyzed continuously regenerating technology™ (CCRT®) filter on the particle size distribution in the raw exhaust from a 2002 Cummins ISM-2002 heavy duty diesel engine (HDDE) is reported at four loads. A CCRT® (henceforth called DOC-CPF) has a diesel oxidation catalyst (DOC) upstream (UP) of a catalyzed particulate filter (CPF). The particle size data were taken at three locations of UP DOC, downstream (DN) DOC and DN CPF in the raw exhaust in order to study the individual effect of the DOC and the CPF of the DOC-CPF on the particle size distribution. The four loads of 20, 40, 60 and 75% loads at rated speed were chosen for this study. Emissions measurements were made in the raw exhaust chosen to study the effect of nitrogen dioxide and temperature on particulate matter (PM) oxidation in the CPF at different engine conditions, exhaust and carbonaceous particulate matter (CPM) flow rates.
Technical Paper

The Effect of a Ceramic Particulate Trap on the Particulate and Vapor Phase Emissions of a Heavy-Duty Diesel Engine

1991-02-01
910609
Exhaust emissions were characterized from a Cummins LTA10 heavy-duty diesel engine operated at two EPA steady-state modes with and without an uncatalyzed Corning ceramic particulate trap. The regulated emissions of nitrogen oxides (NOx), hydrocarbons (HC), and total particulate matter (TPM) and its components as well as the unregulated emissions of PAH, nitro-PAH, mutagenic activity and particle size distributions were measured. The consistently significant effects of the trap on regulated emissions included reductions of TPM and TPM-associated components. There were no changes in NOx and HC were reduced only at one operating condition. Particle size distribution measurements showed that nuclei-mode particles were formed downstream of the trap, which effectively removed accumulation-mode particles. All of the mutagenicity was direct-acting and the mutagenic activity of the XOC was approximately equivalent to that of the SOF without the trap.
Technical Paper

The Effect of Oil and Coolant Temperatures on Diesel Engine Wear

1977-02-01
770086
A study has been made of piston ring wear and total engine wear using literature data and new experimental results. The main purpose of the study was to establish the effects of oil and coolant temperatures on engine wear. Wear trends that were found in the early 1960's may not be valid any longer because of the development of higher BMEP turbocharged diesel engines, better metallurgical wear surfaces and improved lube oil properties. New data are presented for the purpose of describing present wear trends. A direct-injection, 4-cycle, turbocharged diesel engine was used for the wear tests. The radioactive tracer technique was used to measure the top piston ring chrome face wear. Atomic emission spectroscopy was employed to determine the concentration of wear metals in the oil to determine total engine wear based on iron and lead. The data were analyzed and compared to the results found in the literature from previous investigators.
Technical Paper

Target Based Rapid Prototyping Control System for Engine Research

2006-04-03
2006-01-0860
Today's advanced technology engines have a high content of electronic actuation requiring sophisticated real-time embedded software sensing and control. To enable research on such engines, a system with a flexible engine control unit (ECU) that can be rapidly configured and programmed is desired. Such a system is being used in the Advanced Internal Combustion Engine (AICE) Laboratories at Michigan Tech University (MTU) for research on a multi-cylinder spark-ignited gasoline, a high pressure common rail diesel and a single cylinder alternative fuels research engine. The system combines a production ECU with a software development system utilizing Mathworks Simulink/Stateflow © modeling tools. The interface in the Simulink modeling environment includes a library of modeling and interface blocks to the production Operating System (OS), Low Level Drivers (LLD) and CAN-based calibration tool.
Journal Article

Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

2021-04-06
2021-01-0250
Off road navigation demands ground robots to traverse complex and often changing terrain. Classification and assessment of terrain can improve path planning strategies by reducing travel time and energy consumption. In this paper we introduce a terrain classification and assessment framework that relies on both exteroceptive and proprioceptive sensor modalities. The robot captures an image of the terrain it is about to traverse and records corresponding vibration data during traversal. These images are manually labelled and used to train a support vector machine (SVM) in an offline training phase. Images have been captured under different lighting conditions and across multiple locations to achieve diversity and robustness to the model. Acceleration data is used to calculate statistical features that capture the roughness of the terrain whereas angular velocities are used to calculate roll and pitch angles experienced by the robot.
Journal Article

Signal Processing Parameters for Estimation of the Diesel Engine Combustion Signature

2011-05-17
2011-01-1649
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Real Fuel Modeling for Gasoline Compression Ignition Engine

2020-04-14
2020-01-0784
Increasing regulatory demand for efficiency has led to development of novel combustion modes such as HCCI, GCI and RCCI for gasoline light duty engines. In order to realize HCCI as a compression ignition combustion mode system, in-cylinder compression temperatures must be elevated to reach the autoignition point of the premixed fuel/air mixture. This should be co-optimized with appropriate fuel formulations that can autoignite at such temperatures. CFD combustion modeling is used to model the auto ignition of gasoline fuel under compression ignition conditions. Using the fully detailed fuel mechanism consisting of thousands of components in the CFD simulations is computationally expensive. To overcome this challenge, the real fuel is represented by few major components of create a surrogate fuel mechanism. In this study, 9 variations of gasoline fuel sets were chosen as candidates to run in HCCI combustion mode.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Optimization of Fuel Injection Configurations for the Reduction of Emissions and Fuel Consumption in a Diesel Engine Using a Conjugate Gradient Method

2005-04-11
2005-01-1244
The objective of this study is the development of a computationally efficient CFD-based tool with the capability of finding optimal engine operating conditions with respect to emissions and fuel consumption. The approach taken uses a conjugate gradient method, where the line search is performed with a backtracking algorithm. The initial backtracking step employs an adaptive step size mechanism which depends on the steepness of the search direction. The engine simulations are performed with a KIVA-3-based code which is equipped with well-established spray, combustion and emission models. The cost function is based on the idea of the penalty method and is minimized over the unit cube in n-dimensional space, which represents the set of normalized injection parameters under investigation. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine.
X