Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Cascade Atomization and Drop Breakup Model for the Simulation of High-Pressure Liquid Jets

2003-03-03
2003-01-1044
A further development of the ETAB atomization and drop breakup model for high pressure-driven liquid fuel jets, has been developed, tuned and validated. As in the ETAB model, this breakup model reflects a cascade of drop breakups, where the breakup criterion is determined by the Taylor drop oscillator and each breakup event resembles experimentally observed breakup mechanisms. A fragmented liquid core due to inner-nozzle disturbances is achieved by injecting large droplets subject to this breakup cascade. These large droplets are equipped with appropriate initial deformation velocities in order to obtain experimentally observed breakup lengths. In contrast to the ETAB model which consideres only the bag breakup or the stripping breakup mechanism, the new model has been extended to include the catastrophic breakup regime. In addition, a continuity condition on the breakup parameters has lead to the reduction of one model constant.
Technical Paper

A Combustion Model for Multi-Component Fuels Based on Reactivity Concept and Single-Surrogate Chemistry Representation

2018-04-03
2018-01-0260
High fidelity engine simulation requires realistic fuel models. Although typical automotive fuels consist of more than few hundreds of hydrocarbon species, researches show that the physical and chemical properties of the real fuels could be represented by appropriate surrogate fuel models. It is desirable to represent the fuel using the same set of physical and chemical surrogate components. However, when the reaction mechanisms for a certain physical surrogate component is not available, the chemistry of the unmatched physical component is described using that of a similar chemical surrogate component at the expense of accuracy. In order to reduce the prediction error while maintaining the computational efficiency, a method of on-the-fly reactivity adjustment (ReAd) of chemical reaction mechanism along with fuel re-distribution based on reactivity is presented and tested in this study.
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
Technical Paper

Accelerometer Based Sensing of Combustion in a High Speed HPCR Diesel Engine

2007-04-16
2007-01-0972
The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations and for the development of alternative combustion strategies such as HCCI and PCCI. In this work, block mounted accelerometers are investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers are positioned in multiple placements and orientations on the engine, and engine testing is conducted under motored, single and pilot-main injection conditions. Engine tests are then conducted at varying injection timings to observe the resulting time and frequency domain changes of both the pressure and acceleration signals.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

Analysis of Combustion Knock Metrics in Spark-Ignition Engines

2006-04-03
2006-01-0400
Combustion knock detection and control in internal combustion engines continues to be an important feature in engine management systems. In spark-ignition engine applications, the frequency of occurrence of combustion knock and its intensity are controlled through a closed-looped feedback system to maintain knock at levels that do not cause engine damage or objectionable audible noise. Many methods for determination of the feedback signal for combustion knock in spark-ignition internal combustion engines have been employed with the most common technique being measurement of engine vibration using an accelerometer. With this technique single or multiple piezoelectric accelerometers are mounted on the engine and vibrations resulting from combustion knock and other sources are converted to electrical signals. These signals are input to the engine control unit and are processed to determine the signal strength during a period of crank-angle when combustion knock is expected.
Technical Paper

Assessment of CFD Methods for Large Diesel Engines Equipped with a Common Rail Injection System

2000-03-06
2000-01-0948
A KIVA-based CFD tool has been utilized to simulate the effect of a Common-Rail injection system applied to a large, uniflow-scavenged, two-stroke diesel engine. In particular, predictions for variations of injection pressure and injection duration have been validated with experimental data. The computational models have been evaluated according to their predictive capabilities of the combustion behavior reflected by the pressure and heat release rate history and the effects on nitric oxide formation and wall temperature trends. In general, the predicted trends are in good agreement with the experimental observations, thus demonstrating the potential of CFD as a design tool for the development of large diesel engines equipped with Common-Rail injection. Existing deficiencies are identified and can be explained in terms of model limitations, specifically with respect to the description of turbulence and combustion chemistry.
Technical Paper

Assessment of Fuel Consumption of a co-Optimized Gasoline Compression Ignition Engine in a Hybrid Electric Vehicle Platform

2023-04-11
2023-01-0467
Increasing regulatory demand to reduce CO2 emissions has led to an industry focus on electrified vehicles while limiting the development of conventional internal combustion engine (ICE) and hybrid powertrains. Hybrid electric vehicle (HEV) powertrains rely on conventional SI mode IC engines that are optimized for a narrow operating range. Advanced combustion strategies such as Gasoline Compression Ignition (GCI) have been demonstrated by several others including the authors to improve brake thermal efficiency compared to both gasoline SI and Diesel CI modes. Soot and NOx emissions are also reduced significantly by using gasoline instead of diesel in GCI engines due to differences in composition, fuel properties, and reactivity. In this work, an HEV system was proposed utilizing a multi-mode GCI based ICE combined with a HEV components (e-motor, battery, and invertor).
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Characterization of Impingement Dynamics of Single Droplet Impacting on a Flat Surface

2019-01-15
2019-01-0064
The liquid fuel spray impingement onto surfaces occurs in both spark ignited and compression ignited engines. It causes a fundamental issue affecting the preparation of air-fuel mixture prior to the combustion, further, affecting engine performance and emissions. To better understand the underlying mechanism of spray interaction with a solid surface, the physics of a single droplet impact on a heated surface was experimentally investigated. The experimental work was conducted at four surface temperatures where a single diesel droplet was injected from a precision syringe pump with a specific droplet diameter and impact velocity. A high-speed camera was used to visualize the droplet impingement process. Images from the selected test condition (We = 52 to 925, Re = 789 to 3330 based on initial droplet impingement parameters) were analyzed to qualify the impinging outcomes and quantify the post-impingement characteristics.
Technical Paper

Characterization of Partially Stratified Direct Injection of Natural Gas for Spark-Ignited Engines

2015-04-14
2015-01-0937
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) diesel engines to NG fuel and combustion systems (compressed or liquefied). The intention is to realize fuel cost savings and reduce harmful emissions, while maintaining or improving overall vehicle fuel economy. This is a potential path to help the US achieve energy diversity and reduce dependence on crude oil. Traditionally, port-injected, premixed NG spark-ignited combustion systems have been used for medium and heavy duty engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding premixing and extending the lean limits which helps to extend the knock limit.
Technical Paper

Classification and Characterization of Heat Release Rate Traces in Low Temperature Combustion for Optimal Engine Operation

2024-04-09
2024-01-2835
Low temperature combustion (LTC) modes are among the advanced combustion technologies which offer thermal efficiencies comparable to conventional diesel combustion and produce ultra-low NOx and particulate matter (PM) emissions. However, combustion timing control, excessive pressure rise rate and high cyclic variations are the common challenges encountered by the LTC modes. These challenges can be addressed by developing model-based control framework for the LTC engine. In the current study, in-cylinder pressure data for dual-fuel LTC engine operation is analyzed for 636 different operating conditions and the heat release rate (HRR) traces are classified into three distinct classes based on their distinct shapes. These classes are named as Type-1, Type-2 and Type-3, respectively.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Journal Article

Comparison of Direct-Injection Spray Development of E10 Gasoline to a Single and Multi-Component E10 Gasoline Surrogate

2017-03-28
2017-01-0833
Optical and laser diagnostics enable in-depth spray characterization in regards to macroscopic spray characteristics and in-situ fuel mixture quality information, which are needed in understanding the spray injection process and for spray model development, validation and calibration. Use of fuel surrogates in spray researches is beneficial in controlling fuel parameters, developing spray and combustion kinetic models, and performing laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of a single and multi-component surrogate in comparison to a gasoline with 10% ethanol under gasoline direct injection (GDI) engine conditions. In addition, the effect of fuel tracers on spray evolution and vaporization is also investigated. Both diethyl-methyl-amine/fluorobenzene as a laser-induced exciplex (LIEF) fluorescence tracer pair and 3-pentanone as a laser-induced fluorescence (LIF) tracer are examined.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

2009-04-20
2009-01-0584
Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
X