Refine Your Search

Topic

Author

Search Results

Technical Paper

Sound Quality Evaluation of Passenger Vehicle Interior Noise

1993-05-01
931347
Objective measures to evaluate sound quality are important for proper sound design and noise improvement. In this paper, the objective measures of interior noise of passenger vehicle, which is operated at constant engine revolution speed, are discussed. Subjective evaluation test of the interior noise was done using the semantic differential method. By applying factor analysts to the subjective evaluation scores, three important factors of the sound quality were extracted, i.e. comfortable, powerful and booming factors. Each factor was correlated with various physical values, for example octave band levels. Furthermore, the data is analyzed by multiple linear regression analysis with stepwise variable selection, of the each factor scores against the various physical values. Finally, an objective measure to evaluate each of these factors was conducted using the combination of simple physical values. Each of these measures was good correlation with each of the subjective evaluations.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
Technical Paper

Reduction of Spiral Bevel Gear Noise in 4-Wheel Drive Vehicle Transfer System

1992-09-01
922109
Mitsubishi Motors Corporation uses spiral bevel gears in the transfer system for 4-wheel drive passenger cars modified from the front wheel drive configuration. This transfer gear ratio is near 1:1, and gears have uniform depth teeth cutting by the continuous generating method of OERLIKON cutting machine. In this method, the cutter and the work rotations are timed together to accomplish continuous indexing and cutting in order to enable high productivity. In general, it is difficult to reduce the meshing noise of spiral bevel gears and control its quality. The authors established the tooth surface coordinates, to reduce the meshing noise, by studying the influence of tooth surface coordinates on the meshing transmission error (MTE).
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Mitsubishi's Compound Intake System Engine

1985-02-01
850035
Mitsubishi Motors Corporation presents the newly-developed 2-liter engine, which we have named SIRIUS DASH. The SIRIUS DASH engine, with its compound intake system, features great performance in both high and low speed ranges while keeping fuel consumption low. The compound intake system operates the 3 valves in 2 stages. When engine speed is low, just one intake valve is used, but when engine speed increases, two intake valves are used. And to make this engine truly extraordinary, we added a turbocharger with an intercooler, and equipped the whole thing with a total electonic control system. Generally, high performance engines which have large inlet ports and high speed type valve timing enabling them to intake sufficient air for high performance at high speeds. The problem is here that when speed is dropped, combustion becomes unstable at the expense of torque and fuel consumption.
Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
Technical Paper

Intake-Port Design for Mitsubishi GDI Engine to Realize Distinctive In-Cylinder Flow and High Charge Coefficient

2000-10-16
2000-01-2801
The Mitsubishi GDI engine has adopted a pair of upright intake ports, to induce a rotating in-cylinder flow, reverse tumble, and control air fuel mixing with this flow. The port design of the GDI engine was optimized for achieving a high intensity of the reverse tumble while maintaining a high charge coefficient, by means of modeling of in-cylinder flow and experiment with a steady flow rig. First of all, the ideal design of the upright ports was discussed. It was found that for enhancing the reverse tumble, it is more effective to arrange a pair of the ports parallel, than to arrange them convergent. The parallel arrangement leads to the smoother flows passing through the intake sides of the intake valves, and then descending on the cylinder liner, that is turning toward the rotation direction of the reverse tumble, because of less impingement of the flows through a pair of the valves.
Technical Paper

Improvements of Exhaust Gas Emissions and Cold Startability of Heavy Duty Diesel Engines by New Injection-Rate-Control Pump

1986-09-01
861236
In order to investigate the effects of high injection pressure on engine performance and exhaust emissions, some experimental high injection pressure in-line pumps were made and tested. Increasing fuel spray momentum by high injection pressure could reduce smoke emission, but excessive increase in injection pressure was found not so effective in further reducing smoke emission. Accordingly, a high injection pressure should be accomplished within the low engine speed range a feature that has been very difficult to achieve for a conventional in-line pump. An electronic controlled injection-rate-control pump with a variable prestroke mechanism can provide higher injection pressure in low engine speed range and advances injection timing in high engine speed range. This pump can improve fuel economy in low engine speed range and emissions (smoke and particulate) over transient FTP for HDE's.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

Feasibility Study of Two-stage Hybrid Combustion in Gasoline Direct Injection Engines

2002-03-04
2002-01-0113
Two-stage hybrid combustion for a 6-stroke gasoline direct injection SI engine is a new strategy to control the ignition of the HCCI combustion using hot-burned gas from the stratified lean SI combustion. This combustion is achieved by changing the camshafts, the cam-driven gear ratio and the engine control of a conventional 4-stroke gasoline direct injection engine without using a higher compression ratio, any fuel additives and induction air heating devices. The combustion processes are performed twice in one cycle. After the gas exchange process, the stratified ultra-lean SI combustion is performed. The hot-burned gas generated from this SI combustion is used as a trigger for the next HCCI combustion. After gasoline is injected in the burned gas, the hot and homogeneous lean mixture is recompressed without opening the exhaust valves. Thus the HCCI combustion occurs.
Technical Paper

Effects of Shot Peening and Grinding on Gear Strength

1994-03-01
940729
In recent year, higher strength for truck and bus transmission gear has become necessary. For the transmission gears, carburized gears have generally been used. We have examined the effects of shot peening and grinding using a CBN grindstone on the pitting strength and the bending fatigue strength of a carburized gear, and further evaluated a material which reduces the structual anomalies produced during carburization. As a result, it has been found that shot peening or CBN grinding is more effective for improving both pitting strength and bending fatigue strength than improving the material composition. Therefore, it is evident that residual compressive stress caused by shot peening or CBN grinding suppresses the propagation of cracks.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
X