Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Wet Oxidation of a Spacecraft Model Waste

1985-07-01
851372
Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.
Technical Paper

VTOL Controls for Shipboard Operations

1983-10-03
831428
Piloted, moving-base simulations have been performed in the evaluation of several VTOL control system concepts during landings on a destroyer in adverse weather conditions. All the systems incorporated attitude control augmentation; most systems incorporated various types of translational control augmentation implemented either through aircraft attitude or, more directly, through the propulsion system (thrust magnitude and deflection). Only one of the control systems failed to provide satisfactory handling qualities in calm seas. Acceptable handling qualities in sea state 6 seem to require a system with control augmentation in all translational degrees of freedom.
Technical Paper

Takeoff Predictions for Powered-Lift Aircraft

1986-10-01
861630
Takeoff predictions for powered lift short takeoff (STO) aircraft have been added to NASA AMES Research Center's aircraft synthesis (ACSYNT) code. The new computer code predicts the aircraft engine and nozzle settings required to achieve the minimum takeoff roll. As a test case, it predicted takeoff ground rolls and nozzle settings for the YAV-8B Harrier that were close to the actual values. Analysis of takeoff performance for an ejector-augmentor design and a vectoring-nozzle design indicated that ground roll can be decreased, for either configuration, by horizontally moving the rear thrust vector closer to the center of gravity, by increasing the vertical position of the ram drag-vector, or by moving the rear thrust vector farther below the center of gravity.
Technical Paper

Simulation Evaluation of Transition and Hover Flying Qualities of a Mixed-Flow, Remote-Lift STOVL Aircraft

1989-09-01
892284
Using a generalized simulation model developed for piloted evaluations of short take-off/vertical landing aircraft, an initial fixed-base simulation of a mixed-flow, remote-lift configuration has been completed. Objectives of the simulation were to evaluate the integration of the aircraft's flight and propulsion controls to achieve good flying qualities throughout the low-speed flight envelope; to determine control power used during transition, hover, and vertical landing; and to evaluate the transition flight envelope considering the influence of thrust deflection of the remote-lift component. Pilots’ evaluations indicated that Level 1 flying qualities could be achieved for deceleration to hover in instrument conditions, for airfield landings, and for recovery to a small ship when attitude and velocity stabilization and command augmentation control modes were provided.
Technical Paper

Scientific Uses and Technical Implementation of a Variable Gravity Centrifuge on Space Station Freedom

1990-07-01
901360
The evolutionary history of life on Earth has occurred under the omnipresent influence of a gravitational force. The exposure to the microgravity environment of space produces an array of biochemical and physiological changes in plants and animals. These changes extend from the cellular to the whole organism level. In order to manipulate gravity as an experimental variable and to separate the effects of weightlessness from the other variables in spaceflight, it is essential to provide a source of gravity in space. The scientific user community was consulted on the potential need and science requirements for a centrifuge to be designed for and flown on Space Station Freedom.
Technical Paper

Research Centrifuge Accommodations on Space Station Freedom

1990-07-01
901304
The Space Station Freedom will provide a wealth of new opportunities for life sciences research in the microgravity environment of Earth orbit. Such research will require the long-term housing of plant and animal subjects, as well as cell and tissue culture support systems. In addition to newly designed plant and animal vivaria for micro-g, housing for control subjects at one g and fractional g will be required to provide scientific controls, support gravity threshold studies, and perform experiments at Lunar and Mars gravity levels. A natural adjunct to a set of microgravity vivaria in space is, therefore, a centrifuge which could expose the same specimens to variable gravity levels. The larger the centrifuge, the more subjects that can be housed, the smaller the gravity gradient on the subjects, and the smaller the Coriolis effects. Early studies recommended a 4.0 meter diameter centrifuge, the largest that could be accommodated in a Shuttle launchable module.
Technical Paper

Propulsion Simulation Test Technique for V/STOL Configurations

1983-10-03
831427
Ames Research Center is developing the technology for turbine-powered jet engine simulators so that airframe/propulsion system interactions on V/STOL fighter aircraft and other highly integrated configurations can be studied. This paper describes the status of the compact multimission aircraft propulsion simulator (CMAPS) technology. Three CMAPS units have accumulated a total of 340 hr during approximately 1-1/2 yr of static and wind-tunnel testing. A wind-tunnel test of a twin-engine CMAPS-equipped close-coupled canard-wing V/STOL model configuration with nonaxisymmetric nozzles was recently completed. During this test approximately 140 total hours were logged on two CMAPS units, indicating that the rotating machinery is reliable and that the CMAPS and associated control system provide a usable test tool. However, additional development is required to correct a drive manifold O-ring problem that limits the engine-pressure-ratio (EPR) to approximately 3.5.
Technical Paper

OSSA Space Station Waste Inventory

1987-07-01
871413
An inventory was made of the quantities and types of wastes to be produced by typical missions proposed by NASA's Office of Space Science and Applications (OSSA) for the initial operational phase (IOC) of the Space Station. Of the 35 missions inventoried, 21 missions involve “payloads” (instrument packages) attached externally to the Space Station, 12 involve payloads that are located on “free-flying” platforms remote from the Station and 2 missions, (Life Sciences and Materials Sciences laboratories) comprise a complex series of experiments to be carried out inside the Station's pressurized volume. The study objective was to acquire the information needed to define preliminary OSSA waste management requirements for the Space Station and the National Space Transportation System. The study revealed that all missions combined will generate approximately 5350 kg (11800 lbs) of waste (solid, liquid and gas) every 90 days.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Generic Forward-Swept-Wing Aircraft

1982-02-01
821467
Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce direct side-force control.
Technical Paper

Handling Qualities of Canards, Tandem Wings, and Other Unconventional Configurations

1983-02-01
830763
Over the years, a wide variety of aircraft configurations have been flown with varying degrees of success. A brief survey of the handling qualities of canard, tandem wing, and flying wing designs indicates that longitudinal stability and control, lateral/directional stability and control, and stall behavior of these concepts were important factors in achieving pilot acceptance.
Technical Paper

Facilities for Animal Research in Space with Special Reference to Space Station Freedom

1990-07-01
901303
The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.
Technical Paper

Development of a Water Recovery Subsystem Based on Vapor Phase Catalytic Ammonia Removal (VPCAR)

1986-07-14
860985
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine was designed, fabricated and tested. It was fabricated from commercially available components without emphasis on weight, volume and power requirement optimization. Optimizing these parameters would make this process competitive with other spacecraft water recovery systems. Unlike other phase change systems, this process is based on the catalytic oxidation at elevated temperatures of ammonia and volatile hydrocarbons to innocuous products; therefore, no urine pretreatment is required. The testing program consisted of parametric tests, one month of daily tests, and a continuous run of 165 hours. The recovered water is low in ammonia, hydrocarbons and conductivity and requires only adjustment of its pH to meet drinking water standards.
Technical Paper

Civil Applications of High Speed Rotorcraft and Powered Lift Aircraft Configurations

1987-12-01
872372
Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. This paper describes a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these configurations show promise for relieving congestion in high population density regions and providing transportation opportunities for low population density regions.
Technical Paper

Aerodynamic Performance of a Drag Reduction Device on a Full-Scale Tractor/Trailer

1991-09-01
912125
The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120- Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 % at a zero yaw angle.
Technical Paper

A Review of Recent Programs and Future Plans for Rotorcraft In-Flight Simulation at Ames Research Center

1991-09-01
912121
A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a Sikorsky UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described.
X