Refine Your Search

Topic

Search Results

Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

Thin Film Measurement Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2007-07-09
2007-01-3039
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions [1,2,3,4,5]. Reduced gravity testing of the VPCAR System has been initiated to identify any potential problems with microgravity operation. Two microgravity testing campaigns have been conducted on NASA's C-9B Reduced Gravity Aircraft. These tests focused on the fluid dynamics of the unit's Wiped-Film Rotating Disk (WFRD) evaporator. The experiments used a simplified system to study the process of forming a thin film on a rotating disk. The configuration simulates the application of feed in the VPCAR's WFRD evaporator. The first round of aircraft testing, which was completed in early 2006, indicated that a problem with microgravity operation of the WFRD existed. It was shown that in reduced gravity the VPCAR wiper did not produce a uniform thin film [6]. The film was thicker near the axis of rotation where centrifugal forces are small.
Technical Paper

Testing of an R134a Spray Evaporative Heat Sink

2008-06-29
2008-01-2165
The NASA Glenn Research Center has been developing a spacecraft open loop spray evaporative heat sink for use in pressure environments near sea-level, where evaporative cooling of water is not effective. The working fluid is R134a, a common refrigerant used in household appliances, considered safe and non-toxic for humans. The concept uses an open loop spray of R134a impinging on a heated flat plate, through which a closed loop of hot coolant flows, having acquired the heat from spacecraft electronics boxes, the cabin heat exchanger, and other heat sources. The latent heat of evaporation cools the outside of the hot plate, and through heat conduction, reduces the temperature of the coolant. The testing at NASA Glenn has used an electrically heated cylindrical copper target to simulate the hot plate. This paper will discuss the R134a feed system, the test matrix, and test results.
Technical Paper

Simulation Model Development for Icing Effects Flight Training

2002-04-16
2002-01-1527
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Technical Paper

NASA's In-Flight Education and Training Aids for Pilots and Operators

2003-06-16
2003-01-2142
To support NASA's goal to improve aviation safety, the Aircraft Icing Project of the Aviation Safety Program has developed a number of education and training aids for pilots and operators on the hazards of atmospheric icing. A review of aircraft incident and accident investigations has revealed that flight crews have not always understood the effects of ice contamination on their aircraft. To increase this awareness, NASA has partnered with regulatory agencies and pilot trade organizations to assure relevant and practical materials that are focused toward the intended pilot audience. A number of new instructional design approaches and media delivery methods have been introduced to increase the effectiveness of the training materials by enhancing the learning experience, expanding user interactivity and participation, and, hopefully, increasing learner retention rates.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

Iced Aircraft Flight Data for Flight Simulator Validation

2002-04-16
2002-01-1528
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice.
Technical Paper

ISS Destiny Laboratory Smoke Detection Model

2007-07-09
2007-01-3076
Smoke transport and detection were modeled numerically in the ISS Destiny module using the NIST, Fire Dynamics Simulator code. The airflows in Destiny were modeled using the existing flow conditions and the module geometry included obstructions that simulate the currently installed hardware on orbit. The smoke source was modeled as a 0.152 by 0.152 m region that emitted smoke particulate ranging from 1.46 to 8.47 mg/s. In the module domain, the smoke source was placed in the center of each Destiny rack location and the model was run to determine the time required for the two smoke detectors to alarm. Overall the detection times were dominated by the circumferential flow, the axial flow from the intermodule ventilation and the smoke source strength.
Technical Paper

Flying Qualities Evaluation of a Commuter Aircraft with an Ice Contaminated Tailplane

2000-05-09
2000-01-1676
During the NASA/FAA Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and, Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASAT win Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Fire Safety in the Low-Gravity Spacecraft Environment

1999-07-12
1999-01-1937
Research in microgravity (low-gravity) combustion promises innovations and improvements in fire prevention and response for human-crew spacecraft. Findings indicate that material flammability and fire spread in microgravity are significantly affected by atmospheric flow rate, oxygen concentration, and diluent composition. This information can lead to modifications and correlations to standard material-assessment tests for prediction of fire resistance in space. Research on smoke-particle changes in microgravity promises future improvements and increased sensitivity of smoke detectors in spacecraft. Research on fire suppression by extinguishing agents and venting can yield new information on effective control of the rare, but serious fire events in spacecraft.
Technical Paper

Experimental Aerodynamic Simulation of a Scallop Ice Accretion on a Swept Wing

2019-06-10
2019-01-1984
Understanding the aerodynamic impact of swept-wing ice accretions is a crucial component of the design of modern aircraft. Computer-simulation tools are commonly used to approximate ice shapes, so the necessary level of detail or fidelity of those simulated ice shapes must be understood relative to high-fidelity representations of the ice. Previous tests were performed in the NASA Icing Research Tunnel to acquire high-fidelity ice shapes. From this database, full-span artificial ice shapes were designed and manufactured for both an 8.9%-scale and 13.3%-scale semispan wing model of the CRM65 which has been established as the full-scale baseline for this swept-wing project. These models were tested in the Walter H. Beech wind tunnel at Wichita State University and at the ONERA F1 facility, respectively. The data collected in the Wichita St.
Journal Article

Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

2009-07-12
2009-01-2420
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the α of either type of surface. A full monolayer can increase the α/ε ratio by a factor of 3–4 over a clean surface. Little angular dependence of the α of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30° from the surface. The dusted surfaces showed the most angular dependence of α when the incidence angle was in the range of 25° to 35°.
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Design, Fabrication, and Testing of a 10 kW-hr H2-O2 PEM Fuel Cell Power System for High Altitude Balloon Applications

1999-08-02
1999-01-2588
NASA Glenn Research Center and the Wallops Flight Facility jointly conducted a PEM fuel cell power system development effort for high altitude balloon applications. This was the first phase of NASA efforts to offer higher balloon payload power levels with extended duration mission capabilities for atmospheric science missions. At present, lead-acid batteries typically supply about 100 watts of power to the balloon payload for approximately 8 hours duration. The H2-O2 PEM fuel cell demonstration system developed for this effort can supply at least 200 watts for 48 hours duration. The system was designed and fabricated, then tested in ambient ground environments as well as in a thermal vacuum chamber to simulate operation at 75 kft. altitude. Initially, this program was planned to culminate with a demonstration flight test but no flight has been scheduled, thus far.
Technical Paper

Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

1999-08-02
1999-01-2431
The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station’s large solar arrays must be locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling, and analysis results on an ISS assembly mission.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Additional Comparison of Iced Aerodynamic Measurements on a Swept Wing from Two Wind Tunnels

2019-06-10
2019-01-1986
Artificial ice shapes of various geometric fidelity were tested on a wing model based on the Common Research Model. Low Reynolds number tests were conducted at Wichita State University’s Walter H. Beech Memorial Wind Tunnel utilizing an 8.9% scale model, and high Reynolds number tests were conducted at ONERA’s F1 wind tunnel utilizing a 13.3% scale model. Several identical geometrically-scaled ice shapes were tested at both facilities, and the results were compared at overlapping Reynolds and Mach numbers. This was to ensure that the results and trends observed at low Reynolds number could be applied and continued to high, near-flight Reynolds number. The data from Wichita State University and ONERA F1 agreed well at matched Reynolds and Mach numbers. The lift and pitching moment curves agreed very well for most configurations.
X