Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Wide Temperature Core Loss Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

1999-08-02
1999-01-2542
100 kHz core loss properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of Bpeak. For B-fields not close to saturation, the core loss is not sensitive to temperature in this range and is as low as seen in the best MnZn power ferrites at their optimum temperatures. Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at Bpeak = 0.1 T and 50 C only. For example, the 100 kHz specific core loss ranged from 50 mW/cm3 to 70 mW/cm3 for the 3 materials, when measured at 0.1 T and 50 C. This very low high frequency core loss, together with near zero saturation magnetostriction and insensitivity to rough handling, makes these amorphous ribbons strong candidates for power magnetics applications in wide temperature aerospace environments
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

Thin Film Measurement Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2007-07-09
2007-01-3039
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions [1,2,3,4,5]. Reduced gravity testing of the VPCAR System has been initiated to identify any potential problems with microgravity operation. Two microgravity testing campaigns have been conducted on NASA's C-9B Reduced Gravity Aircraft. These tests focused on the fluid dynamics of the unit's Wiped-Film Rotating Disk (WFRD) evaporator. The experiments used a simplified system to study the process of forming a thin film on a rotating disk. The configuration simulates the application of feed in the VPCAR's WFRD evaporator. The first round of aircraft testing, which was completed in early 2006, indicated that a problem with microgravity operation of the WFRD existed. It was shown that in reduced gravity the VPCAR wiper did not produce a uniform thin film [6]. The film was thicker near the axis of rotation where centrifugal forces are small.
Technical Paper

Thermal Strategy for the Phoenix Robotic Arm Deployment

2009-07-12
2009-01-2438
The Mars Scout Phoenix Lander successfully landed in the Martian northern latitude on May 25, 2008. The Robotic Arm, which was designed to dig and to transfer soil samples to other Lander instruments, contained a number of actuators that had specific operational windows on the Martian surface due to the bearing lubricant. The deployment of the Robotic Arm was planned for Sol 2 (Mars days are referred to “Sols”). A few weeks before Mars landing, the Robotic Arm operations team learned that a strict flight rule had been imposed. It specified that the deployment shall be accomplished when the actuators were at or above −25°C since the deployment activity was qualified with the actuators at −40°C. Furthermore, the deployment plan identified a window of opportunity between 13:00 Local Solar Time (LST, equivalent to dividing the Sol into 24 equal Martian hours) and 15:30 LST.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

Thermal Engineering of Mars Entry Non-Ablative Aeroshell Part 1

1999-07-12
1999-01-2198
A transient thermal analysis of a Carbon/Carbon (C/C) Mars Entry Non-Ablative Aeroshell Assembly was performed to determine the maximum temperatures it would reach during a Mars entry. The purpose of this thermal analyses was to (1) determine the maximum temperatures of the 5 layers and the close-out which make up the aerothermal shield and (2) to transmit these temperatures from SINDA/G finite difference format to finite element format in COSMOS/M structures/dynamic models using Technical Alliance Group (TAG) developed SINDA/ G temperature translator software (STT).
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

2008-06-29
2008-01-2001
NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Technical Paper

The State of ISS ATCS Design, Assembly and Operation

2003-07-07
2003-01-2513
The International Space Station (ISS) Active Thermal Control System (ATCS) (Ref. 1,2) has changed over the past several years to address problems and to improve its assembly and operation on-orbit. This paper captures the ways in which the Internal (I) ATCS and External (E) ATCS have changed design characteristics and operations both for the system currently operating on-orbit and the new elements of the system that are about to be added and/or activated. The rationale for changes in ATCS design, assembly and operation will provide insights into the lessons learned during ATCS development. The state of the assembly of the integrated ATCS will be presented to provide a status of the build-up of the system. The capabilities of the on-orbit system will be presented with a summary of the elements of the ISS ATCS that are functional on-orbit plus the plans for launch of remaining parts of the integrated ISS ATCS.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

The Applicability of Past Innovative Concepts to the Technology for New Extremely Large Space Antenna/Telescope Structures

2006-07-17
2006-01-2063
Early development of concepts for space structures up to 1000 meters in size was initiated in the early 1960's and carried through the 1970's. The enabling technologies were self-deployables, on-orbit assembly, and on-orbit manufacturing. Because of the lack of interest due to the astronomical cost associated with advancing the on-orbit assembly and manufacturing technologies, only self-deployable concepts were subsequently pursued. However, for over 50 years, potential users of deployable antennas for radar, radiometers, planar arrays, VLBF and others, are still interested and constantly revising the requirements for larger and higher precision structures. This trend persists today. An excellent example of this trend is the current DARPA/SPO ISAT Program that applies self-deployable structures technology to a 300 meter long active planar array radar antenna. This ongoing program has created a rare opportunity for innovative advancement of state-of-the-art concepts.
Technical Paper

Testing of an R134a Spray Evaporative Heat Sink

2008-06-29
2008-01-2165
The NASA Glenn Research Center has been developing a spacecraft open loop spray evaporative heat sink for use in pressure environments near sea-level, where evaporative cooling of water is not effective. The working fluid is R134a, a common refrigerant used in household appliances, considered safe and non-toxic for humans. The concept uses an open loop spray of R134a impinging on a heated flat plate, through which a closed loop of hot coolant flows, having acquired the heat from spacecraft electronics boxes, the cabin heat exchanger, and other heat sources. The latent heat of evaporation cools the outside of the hot plate, and through heat conduction, reduces the temperature of the coolant. The testing at NASA Glenn has used an electrically heated cylindrical copper target to simulate the hot plate. This paper will discuss the R134a feed system, the test matrix, and test results.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Journal Article

Test of SOI 555 Timer with High Temperature Packaging

2008-11-11
2008-01-2882
The thick oxide layer of silicon-on-insulator (SOI) devices significantly reduces the junction leakage current at elevated temperatures compared to similar Si devices, resulting in an elevated maximum operating temperature. The maximum operating temperature, specified by manufacturers, of commercial SOI devices/circuits with conventional packaging is usually 225°C. It is important to understand the performance and de-ratings of these SOI circuits at temperatures above 225°C without the temperature limit imposed by commercial packaging technology. This work tested a low frequency square-wave oscillator based on an SOI 555 Timer with a special high temperature ceramic packaging technology from room temperature to 375°C. The timer die was attached to a 96% aluminum oxide substrate with high temperature durable gold (Au) thick-film metallization, and interconnected with Au wires.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Sub-Critical Liquid Oxygen (Lox) Storage for Exploration Life Support Systems

2009-07-12
2009-01-2417
Oxygen storage and delivery systems for advanced Lunar Exploration Missions are substantially different than those of the International Space Station (ISS) or Apollo missions. The oxygen must be stored without venting for durations of 180 to 210 days prior to use and then used to supply both the steady, low pressure oxygen for the crew, and the higher-pressure oxygen for the extra-vehicular mobility unit. The baseline design is a high pressure gaseous oxygen storage system. Alternate technologies that may offer substantial advantages in terms of the equivalent system mass over the baseline design are being currently evaluated. This study examines both the supercritical and subcritical liquid oxygen storage options, including one with active cooling using a cryocooler. It is found that an actively cooled sub-critical storage system offered the lowest mass system that could satisfy the requirements.
Technical Paper

Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

2007-09-17
2007-01-3859
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA)- Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
Technical Paper

Statistical Treatise on Critical Biodiesel (B100) Quality Properties in the United States from 2004-2022

2023-08-28
2023-24-0097
The quality of neat biodiesel (B100) is critical for ensuring biodiesel blends used in diesel-powered vehicles do not adversely impact engine performance. In the United States, B100 is required to meet ASTM International’s purity and fuel property requirements in D6751, “Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels.” Here we review the development of this standard for the different grades of B100. The BQ-9000 program, which currently covers over 90% of U.S. and Canadian production volumes, is also described. Engine and original equipment manufacturers have expressed a desire for credible, third-party data on values of various ASTM B100 properties in the commercial market to inform their efforts to address future emissions and durability requirements.
X