Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Thermal Design And Performance Of The Space Support Equipment For The Hubble Space Telescope Second Servicing Mission

New Space Support Equipment (SSE) components developed for the Hubble Space Telescope Second Servicing Mission are described, with particular emphasis on how flight experience from the 1993 First Servicing Mission was utilized in the design and testing process. The new components include the Second Axial Carrier (SAC) Axial Scientific Instrument Protective Enclosure (ASIPE), the magnetic-damped SAC ASIPE Load Isolation System, the Enhanced Power Distribution and Switching Unit (EPDSU), and the Multi-Mission Orbital Replacement Unit Protective Enclosure (MOPE). Analytical modeling predictions are compared with on-orbit data from the Hubble Space Telescope (HST) Second Servicing Mission. Those involved in thermal designs of hardware for use on the Shuttle or Space Station, particularly with astronaut interaction, may find interest in this paper.
Technical Paper

Thermal Assessment of Swift Instrument Module Thermal Control System during First 2.5 Years in Flight

On Day 97, 2005, a temperature excursion of the Burst Alert Telescope (BAT) loop heat pipe (LHP) #1 compensation chamber (CC) caused this LHP shut down. It had no impact on the Gamma Ray Burst (GRB) detection because LHP #0 was nominal. After LHP #1 was started up and its primary heat controller was disabled on Day 98, both LHPs have been nominal. On Day 337, 2004, the X-Ray Telescope (XRT) thermo-electric cooler (TEC) power supply (PS) suffered a single point failure. The charge-coupled device (CCD) has been cooled by the radiator passively to -50°C or colder most of the time. The CCD temperature meets the main objective of pinpointing GRB afterglow positions. With these anomalies overcome, the Instrument Module (IM) thermal control system (TCS) is nominal during the first 2.5 years in flight.
Technical Paper

Thermal Assessment of Swift BAT Instrument Thermal Control System in Flight

The Burst Alert Telescope (BAT) instrument of the Swift mission consists of a telescope assembly, a Power Converter Box (PCB), and a pair of Image Processor Electronics (IPE) boxes (a primary and a redundant). The telescope assembly Detector Array thermal control system includes eight constant conductance heat pipes (CCHPs), two loop heat pipes (LHPs), a radiator that has AZ-Tek's AZW-LA-II low solar absorptance white paint, and precision heater controllers that have adjustable set points in flight. The PCB and IPEs have Z93P white paint radiators. Swift was successfully launched into orbit on November 20, 2004. This paper presents a thermal assessment of the BAT instrument thermal control system during the first six months in flight.
Technical Paper

Thermal Analyses and Design Considerations of NASA’s Passively Cooled 35 K Next Generation Space Telescope (NGST)

The configuration and thermal analyses of NASA’s Next Generation Space Telescope (NGST) Yardstick concept utilizing a novel sunshield approach for passive cooling is described. The NGST mission concept of a large aperture optical telescope passively cooled to less than 40 K and instrument detectors passively cooled to below 30 K is unique from any other mission flown to date. Achieving such a low operational temperature requires reducing by a factor of several thousand the internal heat dissipation and environmental heating of the telescope. The techniques for achieving these requirements, i.e. orbit selection, configuration, etc., along with the supporting thermal analyses are described.
Technical Paper

The Cryogenic Thermal System Design of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

The thermal design and modeling of NASA’s James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is described. The ISIM utilizes a series of large radiators to passively cool its three near-infrared instruments to below 37 Kelvin. A single mid-infrared instrument is further cooled to below 7 Kelvin via stored solid Hydrogen (SH2). These complex cooling requirements, combined with the JWST concept of a large deployed aperture optical telescope, also passively cooled to below 50 Kelvin, makes JWST one of the most unique and thermally challenging space missions flown to date. Currently in the preliminary design stage and scheduled for launch in 2010, NASA’s JWST is expected to replace the Hubble Space Telescope as the premier space based astronomical observatory.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Next Generation Space Telescope (NGST) Pathfinder Experiment Inflatable Sunshield in Space (ISIS)

The Next Generation Space Telescope (NGST) design requires a large sunshield to passively cool the telescope and detectors to temperatures in the 60° to 100° Kelvin range. The government yardstick design for the NGST observatory has baselined an inflatable sunshield. The NGST project plans to fly a one-third-scale sunshield during a Shuttle flight in late 2000. The Inflatable Sunshield in Space (ISIS) experiment will demonstrate stable deployment of a large, multilayer thin film sunshield and ridigization of inflatable struts. A new method of modeling large membrane systems will be developed, and data will be obtained in order to validate the model. The flight experiment will also demonstrate the viability of the thermal approach by verifying separation and flatness of membrane layers.
Technical Paper

Lessons Learned from Hubble Space Telescope ExtraVehicular Activity Servicing Missions

NASA’s Hubble Space Telescope was designed for periodic servicing by Space Shuttle astronauts performing extravehicular activities (EVAs), to service, maintain, repair, and upgrade the telescope. Through three successful servicing missions to date, EVA processes have been developed by applying a series of important lessons learned. These lessons learned are also applicable to many other future human spaceflight and robotic missions, such as International Space Station, satellite retrieval and servicing, and long-duration spaceflight. HST has become NASA’s pathfinder for observatories, EVA development, and EVA mission execution.
Technical Paper

In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.
Technical Paper

Hubble Space Telescope Thermal Math Model Improvement after Fifteen Years of On-Orbit Operations

The Hubble Space Telescope (HST) was launched in 1990 and has undergone several Servicing Missions that have replaced and repaired various scientific and support hardware. As preparations begin for Servicing Mission Four (SM4) in 2008 and the life extension activities that follow, the Telescope Thermal Math Model (TMM) has been improved using the latest thermal analysis software and techniques. Several efforts have been made to improve the HST system-level TMM since launch. A brief history of the major model updates, as well as the motivation behind the changes has been provided. The current improvements have provided the HST systems-level TMM a greater level of detail, while making model control more user-friendly and the results easier to verify. Several modeling techniques useful for spacecraft thermal design and operations support are discussed.
Technical Paper

Geoscience Laser Altimeter System (Glas) Loop Heat Pipes - An Eventful First Year On-Orbit

Goddard Space Flight Center’s Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument.
Technical Paper

Development of the Temperature Control Scheme for the CALIPSO Integrated Lidar Transmitter Subsystem

Following the satellite-level thermal vacuum test for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation spacecraft, project thermal engineers determined that the radiator used to cool the Integrated Lidar Transmitter subsystem during its operation was oversized. In addition, the thermal team also determined that the operational heaters were undersized, thus creating two related problems. Without the benefit of an additional thermal vacuum test, it was necessary to develop and prove by analysis a laser temperature control scheme using the available resources within the spacecraft along with proper resizing of the radiator. A resizing methodology and new laser temperature control scheme were devised that allowed, with a minimum of 20% heater power margin, the operating laser to maintain temperature at the preferable set point. This control scheme provided a solution to a critical project problem.
Technical Paper

An Evaluation of the Hubble Space Telescope Thermal Design in Preparation for the Final Servicing Mission

Having been in operation for over 15 years, the Hubble Space Telescope (HST) had experienced significant changes in both hardware upgrades and operational modes. The changes were necessary to improve performance of some equipment and to replace failed electronics in others. Hardware replacements were done in several servicing missions. To accommodate the change in physical condition of HST, alterations in the way the telescope is operated were also required. The final opportunity to make any hardware changes on HST is during Servicing Mission 4 (SM-4) which is currently scheduled for December of 2007. It is important to make the most appropriate changes in order to ensure that HST will be in good operating condition until its planned termination. In order to provide manifest input to the HST project for the final servicing mission, the HST thermal team must conduct careful evaluation of every single piece of hardware on HST.
Technical Paper

A Computer Controlled Power Tool for Servicing the Hubble Space Telescope

The Hubble Space Telescope (HST) was designed to be serviced from the shuttle by astronauts performing extravehicular activities (EVA). During the first HST Servicing Mission (STS-61) two types of power tools were flown, the Power Ratchet Tool (PRT) and the HST Power Tool. Each tool had both benefits and drawbacks. An objective for the second HST servicing mission was to combine the reliability, accuracy, and programmability of the PRT with the pistol grip ergonomics and compactness of the HST Power Tool into a new tool called the EVA Pistol Grip Tool (PGT). The PGT is a self-contained, microprocessor controlled, battery powered, 3/8-inch drive hand-held tool. The PGT may also be used as a non-powered ratchet wrench. Numerous torque, speed, and turn or angle limits can be programmed into the PGT for use during various servicing missions. Batteries Modules are replaceable during ground, Intravehicular Activities (IVA), and EVA operations.