Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
Technical Paper

A High Efficiency Magnetic Activated Sludge Reactor for Wastewater Processing

1999-07-12
1999-01-1945
Technologies for the recycling of water are a primary goal of NASA’s advanced life support programs. Biological processes have been identified as an attractive method for wastewater processing. A fundamental new bioreactor based on a traditional activated sludge process is demonstrated that treats hygiene wastewater using magnetic iron oxide particles agglomerated with microbial cells. In this bioreactor, microbes are suspended in magnetic flocs in a wastewater medium. Instead of a traditional gravity separator used in activated sludge operations, a magnetic separator removes the microbial flocs from the outlet stream. The reactor separation operates continuously, independent of gravitational influences. The reactor has been able to simultaneously remove 98% of high levels of both nitrogenous and organic carbon impurities from the wastewater as well as achieve acceptably low levels of total suspended solids.
Technical Paper

A Lightweight EVA Emergency System

2003-07-07
2003-01-2447
TDA Research, Inc. (TDA) is developing a compact, lightweight ExtraVehicular activity (EVA) emergency system that provides 30-minute life-support in the case of system or component failures in the Portable Life Support System (PLSS). The system uses a low ventilation rate to reduce the amount of stored oxygen, reducing the associated weight and volume penalty. Operation of the system requires an effective sorbent that would remove carbon dioxide and moisture from the suit. We are developing a regenerable sorbent that is suitable for the conceptual system. Recently, we tested the sorbent performance in an adiabatic reactor setup simulating representative EVA emergency conditions. This paper summarizes results of these adiabatic tests.
Technical Paper

A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet

2017-09-19
2017-01-2111
Over the last couple decades, there has been a growing interest in incorporating commercial off-the-shelf (COTS) technologies and open standards in the design of human-rated spacecraft. This approach is intended to reduce development and upgrade costs, lower the need for new design work, eliminate reliance on individual suppliers, and minimize schedule risk. However, it has not traditionally been possible for COTS solutions to meet the high reliability and fault tolerance requirements of systems implementing critical spacecraft functions. Byzantine faults are considered particularly dangerous to such systems because of their ability to escape traditional means of fault containment and disrupt consensus between system components. In this paper, we discuss the design of a voting protocol using Time-Triggered Ethernet capable of achieving data integrity in the presence of a single Byzantine fault.
Technical Paper

A Study to Explore Locomotion Patterns in Partial Gravity Environments

1992-07-01
921157
The primary objectives of this study were to determine the factors that affect stability during locomotion in both lunar and martian gravity environments and to determine the criteria needed to enhance stability and traction. This study tested the effects of changing the speed of locomotion and the pattern of locomotion under three gravity conditions. The results showed that as the gravity level decreased, the amount of vertical and horizontal forces dropped significantly. The results also showed that there are some similarities across gravity levels with regard to changing the speed as well as the pattern of locomotion. In general, an increase in the speed resulted in an increase in the vertical and the horizontal forces. A change in the pattern of locomotion showed that even at reduced gravity, it will be more difficult to stop than compared to continue or start the motion.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

ALSSAT Development Status

2009-07-12
2009-01-2533
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division of the NASA Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of Exploration Life Support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically.
Technical Paper

ALSSAT Development Status and Its Applications in Trade Studies

2004-07-19
2004-01-2438
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the ALS regenerative system technologies (1, 2). This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically.
Technical Paper

Advanced Life Support Sizing Analysis Tool (ALSSAT) Using Microsoft® Excel

2001-07-09
2001-01-2304
The development of an optimum regenerative Advanced Life Support (ALS) system for future Mars missions has been a crucial issue in the space industry. Considering the numerous potential technologies for subsystems with the complexity of the Air Revitalization System (ARS), Water Reclamation System (WRS), and Waste Management System of the Environmental Control and Life Support System (ECLSS), it will be time-consuming and costly to determine the best combination of these technologies without a powerful sizing analysis tool. Johnson Space Center (JSC), therefore, initiated the development of ALSSAT using Microsoft® Excel for this purpose. ALSSAT has been developed based upon the ALS Requirement and Design Definition Document (Ref. 18). In 1999, a paper describing the development of ALSSAT with its built-in ARS mass balance model (Ref. 21) was published in ICES.
Technical Paper

Advanced Regenerable CoD2 Removal Technologies Applicable to Future Emus

1996-07-01
961484
The NASA Shuttle Extravehicular Mobility Unit (EMU) uses a non-regenerable absorbent to remove CO2 from an astronaut's breathing loop. A savings in launch weight, storage volume and life cycle cost may be achieved by incorporating a regenerable CO2 removal system into the EMU. This paper will discuss regenerable CO2 sorbents and their impact on the life support system of an EMU. The systems evaluated will be judged on their technical maturity, impact to the EMU, and impacts to space station and shuttle operation
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Analysis and Design of Crew Sleep Station for ISS

2002-07-15
2002-01-2303
This paper details the analysis and design of the Temporary Sleep Station (TeSS) environmental control system for International Space Station (ISS). The TeSS will provide crewmembers with a private and personal space, to accommodate sleeping, donning and doffing of clothing, personal communication and performance of recreational activities. The need for privacy to accommodate these activities requires adequate ventilation inside the TeSS. This study considers whether temperature, carbon dioxide, and humidity remain within crew comfort and safety levels for various expected operating scenarios. Evaluation of these scenarios required the use and integration of various simulation codes. An approach was adapted for this study, whereby results from a particular code were integrated with other codes when necessary.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Assessing Biofidelity of the Test Device for Human Occupant Restraint (THOR) Against Historic Human Volunteer Data

2013-11-11
2013-22-0018
The National Aeronautics and Space Administration (NASA) is interested in characterizing the responses of THOR (test device for human occupant restraint) anthropometric test device (ATD) to representative loading acceleration pulse s. Test conditions were selected both for their applicability to anticipated NASA landing scenarios, and for comparison to human volunteer data previously collected by the United States Air Force (USAF). THOR impact testing was conducted in the fore-to-aft frontal (-x) and in the upward spinal (-z) directions with peak sled accelerations ranging from 8 to 12 G and rise times of 40, 70, and 100ms. Each test condition was paired with historical huma n data sets under similar test conditions that were also conducted on the Horizontal Impulse Accelerator (HIA). A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software.
Technical Paper

Assessment of Microbial Community Variability in Replicate Tubular Nitrifying Bioreactors using PCR and TRFLP Analysis

2003-07-07
2003-01-2511
Bioregenerative life support systems (BLSS) may be necessary for long-term space missions due to the high costs of lifting supplies and equipment into orbit. Much of the recycling to be done in a BLSS involves microbial activity. Although most studies to date have used a culture-based approach to characterize bacteria in BLSS under development, recently work has begun utilizing non-culture-based, DNA approaches to elucidate which microbes are present. In this study, we investigated whether replicate reactors develop replicate microbial communities using a 16S rRNA gene approach and terminal restriction length polymorphism analysis for tubular, nitrifier reactors in use at JSC. Our result suggests that both individual reactor and temporal signals can be detected in the microbial populations. This information may lead to optimization of inoculation procedures and reactor operations conditions to increase predictability and reliability of biological systems.
Technical Paper

Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

2004-07-19
2004-01-2477
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
Technical Paper

Automated Subsystems Control Development

1985-07-01
851379
This paper describes the objectives, plans, and status of the NASA-sponsored program “Automated Subsystems Control for Life Support Systems (ASCLSS).” The program objectives are to define a generic automation approach for Space Station subsystems and to demonstrate the selected automation technique by controlling and monitoring the Air Revitalization Group (ARG) of a regenerative Environmental Control and Life Support system (ECLSS). The ARG consists of three ECLSS processes: CO2 concentrator, CO2 reduction, and O2 generation. The ASCLSS automation approach consists of a hierarchy of distributed controllers implemented with 1750A microprocessors and a high speed busing network. System level, process control, and real-time operating system software will be integrated with controller hardware to demonstrate the automated control and monitoring of three ECLSS processes. The ECLSS processes will be simulated by three ARG simulators, implemented in individual personal computers.
Technical Paper

Automatic Thermal Control Through a LCVG for a Spacesuit

1999-07-12
1999-01-1970
Automatic thermal control (ATC) was investigated for implementation into a spacesuit to provide thermal neutrality to the astronaut through a range of activity levels. Two different control concepts were evaluated and compared for their ability to maintain subject thermal comfort. Six test subjects, who were involved in a series of three tests, walked on a treadmill following specific metabolic profiles while wearing the Mark III spacesuit in ambient environmental conditions. Results show that individual subject comfort was effectively provided by both algorithms over a broad range of metabolic activity. ATC appears to be highly effective in providing efficient, “hands-off” thermal regulation requiring minimal instrumentation. Final selection of an algorithm to be implemented in an advanced spacesuit system will require testing in dynamic thermal environments and consideration of technology for advancement in instrumentation and controller performance.
Technical Paper

BIO-Plex Thermal Control System Design

2001-07-09
2001-01-2324
Engineers at the Johnson Space Center (JSC) are using innovative strategies to design the TCS for the Bio-regenerative Planetary Life Support Systems Test Complex (BIO-Plex), a regenerative advanced life support system ground test bed. This paper provides a current description of the BIO-Plex TCS design, testing objectives, analyses, descriptions of the TCS test articles expected to be tested in the BIO-Plex, and forward work regarding TCS. The TCS has been divided into some subsystems identified as permanent “infrastructure” for the BIO-Plex and others that are “test articles” that may change from one test to the next. The infrastructure subsystems are the Heating, Ventilation and Air-Conditioning (HVAC), the Crew Chambers Internal Thermal Control Subsystem (CC ITCS), the Biomass Production Chamber Internal Thermal Control Subsystem (BPC ITCS), the Waste Heat Distribution Subsystem (WHDS) and the External Thermal Control Subsystem (ETCS).
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
X