Refine Your Search



Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Urine Pretreatment Configuration and Test Results for Potential Space Station Applications

Pretreatment of urine using Oxone® and sulfuric acid is baselined in the International Space Station (ISS) waste water reclamation system to control odors, fix Ammonia and control microbial growth. In addition, pretreatment is recommended for long term flight use of urine collection and two phase separation to reduce or eliminate fouling of the associated hardware and plumbing with urine precipitates. This is important to the ISS application because the amount of maintenance time for cleaning and repairing hardware must be minimized. This paper describes the development of a chemical pretreatment system based on solid tablet shapes which are positioned in the inlet urine collection hose and are dissolved by the entrained urine at the proper ratio of pretreatment to urine. Building upon the prior success of the developed and tested solid Oxone tablet, a trade study and tests were completed to confirm if a similar approach would be appropriate for the sulfuric acid injection method.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV(Crew Return Vehicle) Orbital Heat Sink

A porous plate sublimator (an existing Lunar Module design) is being evaluated as the heat sink for the X-38 vehicle due to its simplicity, reliability, and flight readiness. It is ideally suited for the X-38/CRV as it requires no active control, has no moving parts, has 100 % water usage efficiency, and is a well-proven technology. This paper presents sublimator performance, including ground test data at CRV conditions, at both a component and system level. Potential sublimator modifications which could allow significant CRV ECLSS system simplification, reliability enhancement, and cost reduction are also discussed.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Testing of Russian ECLSS - Sabatier and Potable Water Processor

Hamilton Standard Space Systems International, Inc. (HSSSI) has obtained and is currently testing a variety of Russian life support hardware. These units have been or are contemplated for use on Mir I and II space stations. This paper presents the current status of performance testing of a Sabatier Carbon Dioxide Processing Unit (CDPU) and components of a Potable Water Processing System (PWP). These systems were fabricated by NIICHIMMASH, the supplier of these units to the Russian space program. It is the intent of this testing program to obtain a data base for technology comparisons to support planned and future international missions. For the CDPU, reactant conversion efficiencies in excess of 99 percent have been noted for the variation in test conditions with 2 to 6 man processing (flows) tested. The CDPU's effluent water has been produced at anticipated rates and is relatively contaminant free.
Technical Paper

TIMES Regenerator Redesign Description

The TIMES is an evaporative water processor which has shown great theoretical potential for providing reliable and efficient production of high quality water. The test results of the system have however fallen short of the predicted performances. A thorough systems analysis has identified the condensing heat exchanger as a primary source of the shortcomings of the assembly. This condenser, along with three other heat exchangers in the system, have been redesigned and integrated into a new “Regenerator” that is predicted to significantly lower the power consumption and improve both the operating stability and product water quality.
Technical Paper

Steam Gasification and Reformation of Spacecraft Wastes

A two-stage steam gasification and reforming process was evaluated for converting wastes generated within enclosed habitable environments into synthesis gas (CO & H2) and other recyclable inorganic species, i.e. water, CO2 and inorganic salts. Waste compounds used in the experimentation included: cellulose; urea; methionine; sucrose; butyric acid; Igepon TC-42 - a particularly (chemically) stable soap selected by NASA for use in space life support systems; wheat straw and a high density polyethylene. The compounds were tested individually and in combination to simulate the wastes anticipated within enclosed habitat environments.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Revised Solid Waste Model for Mars Reference Missions

A key component of an Advanced Life Support (ALS) system is the solid waste handling system. One of the most important data sets for determining what solid waste handling technologies are needed is a solid waste model. A preliminary solid waste model based on a six-person crew was developed prior to the 2000 Solid Waste Processing and Resource Recovery (SWPRR) workshop. After the workshop, comments from the ALS community helped refine the model. Refinements included better estimates of both inedible plant biomass and packaging materials. Estimates for Extravehicular Mobility Unit (EMU) waste, water processor brine solution, as well as the water contents for various solid wastes were included in the model refinement efforts. The wastes were re-categorized and the dry wastes were separated from wet wastes. This paper details the revised model as of the end of 2001. The packaging materials, as well as the biomass wastes, vary significantly between different proposed Mars missions.
Technical Paper

Removal of Low Levels of Ammonium Ion From pacecraft Recycled Water

Poly (vinyl chloride) (PVC) matrix membranes which incorporate the ionophore nonactin have been evaluated as cation exchange membranes for ammonium ion transport in an electrolytic cell configuration. Interest exists for the development of cation selective membranes for removal of low levels (<200ppm) of ammonium ions commonly found in recycled effluent streams in such diverse applications as expected in a Space Station and commercial fisheries. Ammonium ions are generated as a decomposition product of urea and over time build up in concentration, thus rendering the water unsuitable for human consumption. Nonactin is commonly used in a PVC matrix for ion-selective electrodes.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Journal Article

Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design

The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew's core body temperatures.
Technical Paper

Physiological Experience During Shuttle EVA

To date, 59 man-EVA's have been conducted in the Shuttle Program with minimum physiological problems or limitations. The physiological requirements for life support in the Shuttle EVA include pressure, gas composition, inspired CO2 pressure, heat- removal capability, in-suit water replacement, and caloric replacement. These requirements and their basis in verification testing or analysis are reviewed. The operational measures are identified. The suit pressure in combination with a gas composition of at least 92 percent assures that sufficient O2 pressure is available to the crewmember. The nominal suit pressure of 4.3 psi±0.1 psi was maintained during all 59 man-EVA's. The contingency suit pressure was never required to be used. The suit pressure in combination with the cabin pressure and pre-EVA denitrogenation procedures minimize the risk of altitude decompression sickness. There has been no incidence of decompression sickness during Shuttle EVA.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Parametric Impacts on Sabatier Water Production Capability

The generation (and recovery) of water, rather than the reduction of CO2, drives the requirements for the integration of a Sabatier CO2 Reduction Subsystem (SCRS) within an Air Revitalization Subsystem (ARS). It is important, therefore, to understand the system level decisions that impact the water production capability of the Sabatier CO2 Reduction Subsystem. This paper defines each of the operational parameters that affect water production and loss and explores the impact they each have on total water recovery. The particular subsystem parameters examined include hydrogen and carbon dioxide flow rates, feed gas composition, subsystem operating pressure, condensing heat exchanger performance, heat sink temperature, and phase separator performance. Each of these has a minor contribution to the amount of water lost from the system, but combined, their effect is substantial.