Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Novel Regenerable Incinerator Exhaust Purification and Trace Contaminant Control System Utilizing Humidity Swings

1998-07-13
981760
This paper offers a concept for a regenerable, low-power system for purifying exhaust from a solid waste processor. The innovations in the concept include the use of a closed-loop regeneration cycle for the adsorber, which prevents contaminants from reaching the breathable air before they are destroyed, and the use of a humidity-swing desorption cycle, which uses less power than a thermal desorption cycle and requires no venting of air and water to space vacuum or planetary atmosphere. The process would also serve well as a trace contaminant control system for the air in the closed environment. A systems-level design is presented that shows how both the exhaust and air purification tasks could be performed by one processor. Data measured with a fixed-bed apparatus demonstrate the effects of the humidity swing on regeneration of the adsorbent.
Technical Paper

Development of Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization and Analysis of Desiccating Membrane

2003-07-07
2003-01-2367
The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane-integrated, adsorption processor for CO2 removal and compression in closed-loop air revitalization systems. The membrane module removes water from the feed, passing it directly into the processor's exhaust stream; it replaces the desiccant beds in the current four-bed molecular sieve system, which must be thermally regenerated. Moreover, in the new processor, CO2 is removed and compressed in a single two-stage unit. This processor will use much less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems.
X