Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Wing Modification for Increased Spin Resistance

1983-02-01
830720
A simple wing leading-edge modification has been developed that delays outer wing panel stall, thus maintaining roll damping to higher angles of attack and delaying the onset of autorotation. The stall angle of attack of the outer wing panel has been shown to be a function of the spanwise length of the leading-edge modification. The margin of spin resistance provided by the modification is being explored through flight tests. Preliminary results have been used to evaluate spin resistance in terms of the difference in angle of attack between outer wing panel stall and the maxiumum attainable angle of attack.
Technical Paper

Wind-Tunnel Investigation of a General Aviation Airplane Equipped With a High Aspect-Ratio, Natural-Laminar-Flow Wing

1987-08-01
871019
An investigation has been conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance and stability and control characteristics of a full-scale general aviation airplane equipped with a natural-laminar-flow wing. The study focused on the effects of natural laminar flow and boundary layer transition, and on the effects of several wing leading-edge modifications designed to improve the stall resistance of the configuration. Force and moment data were measured over wide angle-of-attack and sideslip ranges and at Reynolds numbers from 1.4 × 106 to 2.1 × 106 based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating-chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stalling characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance the cruise performance of the configuration.
Technical Paper

Wind-Tunnel Investigation of Commercial Transport Aircraft Aerodynamics at Extreme Flight Conditions

2002-11-05
2002-01-2912
A series of low-speed static and dynamic wind tunnel tests of a commercial transport configuration over an extended angle of attack/sideslip envelope was conducted at NASA Langley Research Center. The test results are intended for use in the development of an aerodynamic simulation database for determining aircraft flight characteristics at extreme and loss-of-control conditions. This database will be used for the development of loss-of-control prevention or mitigation systems, pilot training for recovery from such conditions, and accident investigations. An overview of the wind-tunnel tests is presented and the results of the tests are evaluated with respect to traditional simulation database development techniques for modeling extreme conditions to identify regions where simulation fidelity should be addressed.
Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

2002-11-05
2002-01-2935
An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that inthe presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.
Technical Paper

US National Laboratory R&D Programs in Support of Electric and Hybrid Electric Vehicle Batteries

2002-06-03
2002-01-1948
The successful commercialization of Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) can provide significant benefits by reducing the United States' growing dependence on petroleum fuels for transportation; decreasing polluting and greenhouse gas emissions; and facilitating a long-term transition to sustainable renewable energy sources. Recognizing these benefits, the U.S. Department of Energy (DOE) supports an active program of long-range R&D to develop electric vehicle (EV) and hybrid electric vehicle (HEV) technologies and to accelerate their commercialization. The DOE Office of Advanced Automotive Technologies (OAAT) supports several innovative R&D programs, conducted in partnership with DOE's national laboratories, industry, other government agencies, universities, and small businesses. The Office has two key R&D cooperative agreements with the U.S. Advanced Battery Consortium (USABC) to develop high-energy batteries for EVs and high-power batteries for HEVs.
Technical Paper

Towards a 3D Space Radiation Transport Code

2002-07-15
2002-01-2333
High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.
Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

2007-07-09
2007-01-3244
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Theoretical Investigations, and Correlative Studies for NLF, HLFC, and LFC Swept Wings at Subsonic, Transonic and Supersonic Speeds

1987-10-01
871861
The results of theory/experiment correlative studies at subsonic and supersonic Mach numbers are presented in this paper. These studies were conducted by using theoretical design tools consisting of the Method of Characteristics, newly-developed integral compressible boundary-layer methods for infinitely swept wings, namely, laminar boundary layer with suction, prediction of neutral instability and transition due to amplification of Tollmien-Schlichting (T.S.) waves and crossflow (C.F.), and a method for predicting separating turbulent boundary-layer characteristics. Results of correlations have indicated that the present integral boundary layer methods are quite successful in predicting transition phenomenon both at transonic and supersonic speeds.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

The Role of Pilot Error in Civil Aviation Accidents - A Causal Analysis using the HFACS and ASAFE Frameworks

2000-04-11
2000-01-2104
A causal analysis of aviation accidents that involved pilot error is presented. The analysis employs a top-down methodology that investigates the relationship between pilot errors and other causal factors with accidents. The Human Factors Analysis and Classification System (HFACS) framework is utilized to produce a comprehensive causal analysis of accident groups. This analysis will compare and evaluate causal factor patterns for both accidents induced by pilot errors and those where pilot error was a contributor but not the initiating event. Pilot induced accidents are those initiated by an inappropriate action of the aircrew. That is, the National transportation Safety Board (NTSB) report cited pilot error first within its analysis defining accident causes, factors, and findings. Pilot contributed accidents are those that are initiated by some other causal factor (weather, aircraft failure, etc.) and the pilot’s inappropriate action played a part in the outcome.
Technical Paper

The Laminar Separation Sensor: An Advanced Transition Measurement Method for Use in Wind Tunnels and Flight

1987-09-01
871018
Current viscous drag reduction research explores the limits of practical applications of natural laminar flow (NLF) for airplane drag reduction. To better understand these limits, advanced measurement techniques are required to study the characteristics of laminar to turbulent boundary-layer transition. Recent NASA research indicates that the transition mode which involves laminar separation can be detected using arrayed hot-film laminar separation sensor concepts. These surface-mounted sensors can provide information on the location of the laminar separation bubble as well as bubble length. This paper presents two different laminar separation sensor configurations developed in the NASA program and presents results of wind-tunnel and flight evaluations of the sensors as tools to detect boundary-layer transition.
Technical Paper

The Impact of a Weather Information System Display on General Aviation Pilot Workload and Performance

2002-04-16
2002-01-1522
The effect on general aviation (GA) pilots' abilities to fly a small airplane while using a prototype data-linked weather information system (WIS) display, located in various cockpit positions, was investigated in comparison to the effect on their flying of acquiring weather information through conventional means. Ten GA pilots performed en route flying tasks of varying difficulty while concurrently performing weather information acquisition tasks. Pilots' subjective workload ratings, weather information acquisition times and accuracy levels, and preliminary flight path parameter deviation data indicate that using a WIS display results in smaller flight path parameter deviations, lower workload, and faster and slightly more accurate information retrieval than when weather information is obtained via the radio.
Technical Paper

The Impact of Technology on Fighter Aircraft Requirements

1985-10-01
851841
Technology integration studies were made to examine the impact of emerging technologies on fighter aircraft. The technologies examined included advances in aerodynamics, controls, structures, propulsion, and systems and were those which appeared capable of being ready for application by the turn of the century. A primary impetus behind large increases in fighter capability will be the rapid increase in fighter engine thrust-to-weight ratio. High thrust-weight engines, integrated with other advanced and emerging technologies, can result in small extremely maneuverable fighter aircraft that have thrust-weight ratios of 1.4+ and weight one-half as much as today's fighters. Future fighter aircraft requirements are likely to include a turn capability in excess of 7g's throughout much of the maneuver envelope, post-stall maneuverability, STOVL or VTOL, and a single engine for low cost.
Technical Paper

The Generation of Tire Cornering Forces in Aircraft with a Free-Swiveling Nose Gear

1985-10-01
851939
Various conditions can cause an aircraft to assume a roll or tilt angle on the runway, causing the nose tire(s) to produce significant uncommanded cornering forces if the nose gear is free to swivel. An experimental investigation was conducted using a unique towing system to measure the cornering forces generated by a tilted aircraft tire. The effects of various parameters on these cornering forces including tilt angle, trail, rake angle, tire inflation pressure, vertical load, and twin-tire configuration were evaluated. Corotating twin-tires produced the most severe cornering forces due to tilt angle. A discussion of certain design and operational considerations is included.
X