Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Water Analysis Results from Phase II of the NASA Early Human Testing Initiative 30-Day Closed Chamber Test

An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper

Space Station Galley Design

This paper summarizes requirements, design concepts, and a baseline configuration for an Advanced Food Hardware System (AFHS) galley for the initial operating capability (IOC) Space Station. The AFHS program is being developed by McDonnell Douglas Astronautics Co (MDAC). ILC Space Systems. Whirlpool, and Hamilton Standard under contract to NASA-ISC. Space Station will employ food hardware items that have never been flown in space such as a dishwasher. microwave oven, blender/mixer, bulk food and beverage dispensers. automated food inventory management, a trash compactor. and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades. design, development, and testing associated with each are summarized. Space Station objectives and constraints that impact the design of food hardware are described as are their implications for hardware selection, design, and test.
Technical Paper

Recent Shuttle EVA Operations and Experience

This paper describes the hardware used and the experience gained during the Space Shuttle extravehicular activities (EVAs) or “spacewalks” of 1984. Seven EVAs on four missions were conducted with objectives including hardware verification, satellite repair, hydrazine transfer, and satellite retrieval. The hardware used on these flights falls into two categories - general EVA hardware (e.g. the Manned Maneuvering Unit) and mission-unique hardware (e.g. apogee kick motor capture device, used to retrieve the WESTAR VI and PALAPA B-2 satellites). The successful completion of the mission objectives resulted in an increased knowledge of EVA operations and a broader base of Space Shuttle capabilities which are applicable to future operations.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

Modeling Stochastic Performance and Random Failure

High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Development of a Prototype Pressure Swing CO2/H2O Removal System for an Advanced Spacesuit

NASA JSC has contracted with Hamilton Standard Space Systems International (HSSSI) to develop a combined CO2/H2O removal system for an advanced space suit. This system will operate with a novel solid amine sorbent that has demonstrated a large increase in capacity over previous solid amine sorbents. The concept will use two beds of the sorbent operating on a pressure swing removal process. This paper discusses the design, fabrication and testing of this prototype system. The overall system design consists of two sorbent beds, a spool valve for directing vacuum and process air, and a controller to monitor the overall process and switch the spool valve at the appropriate time. We will include a discussion of the quick-cast process used in the fabrication of major system components. Finally, we will present the results of testing the full-scale prototype at HSSSI, and its ability to remove CO2/H2O and be regenerated continuously.
Technical Paper

An Orbiter Upgrade Demonstration Test Article for a Fail-Safe Regenerative CO, Removal System

The current regenerative CO, Removal System (RCRS) is a two sorbent bed, vacuum pressure swing, CO, adsorption/desorption system. While one bed is removing CO, and moisture from cabin air, the other bed is vented to space vacuum so that the CO, and water can be desorbed off the bed. To guard against the possibility that cabin air can be vented directly to space, 11 valves and a series of mechanical linkages control the flow paths. The RCRS has one set of adsorption beds, one fan, one compressor, and two redundant controllers. A single failure could cause a loss of function; so a contingency CO, removal system must, and is flown. A new sorbent material has been developed that greatly decreases the required size of the sorbent bed. A new valve design is proposed that replaces the complex series of valves and linkages with one moving part. Using the new bed material and new valve design, system size and weight can be cut approximately in half.
Technical Paper

Advanced Air Revitalization System Modeling and Testing

To support manned lunar and Martian exploration, NASA/JSC and LESC are conducting an extensive evaluation of air revitalization subsystems. The major operations under study include regenerative CO2 removal and reduction; O2 and N2 production, storage, and distribution; humidity and temperature control; and trace contaminant control. This paper describes the ongoing analysis of air revitalization subsystems, including ASPEN PLUS™ modeling and breadboard test stand operation. A comprehensive analysis program based on a generalized block flow model is currently being developed to facilitate the evaluation of various processes and their interactions. Future plans for the development of this simulation will be discussed. ASPEN PLUS™ has been used to model a variety of the subsystems described above; application of this package in modeling CO2 removal and reduction will be discussed.