Refine Your Search

Topic

Search Results

Technical Paper

Thick Film ZrO2 NOx Sensor

1996-02-01
960334
This paper describes the design concept and evaluation test results of a multi-layered, thick film zirconia NOx sensor which can be used for lean-burn engine management. The oxygen concentration in the measuring gas is lowered to a predetermined level with an oxygen pumping cell, in the first stage. In the second stage, another pumping cell further lowers the oxygen concentration which results in simultaneous NOx decomposition. The second stage pumping current is proportional to the NOx concentration in the measuring gas.
Technical Paper

Selective Heat Insulation of Combustion Chamber Walls for a DI Diesel Engine with Monolithic Ceramics

1989-02-01
890141
The engine performance and emissions characteristics of a single-cylinder DI diesel engine were experimentally investigated. The combustion chamber walls of the engine were thermally insulated with ceramic materials of SSN (Sintered Silicon Nitride) and PSZ (Partially Stabilized Zirconia). Fuel economy and emissions characteristics were improved by insulating selected locations of the combustion chamber walls. The selective insulation helped to create activated diffusion combustion and resulted in more efficient use of the intake air.
Technical Paper

Reduction of Wall Thickness of Ceramic Substrates for Automotive Catalysts

1990-02-01
900614
Ceramic honeycombs have been used as automotive catalyst supports in US, Japan, Europe and other highly urbanized countries. Now, engine output is a great concern for automanufacturers, and reduction of the wall thickness of honeycomb substrates became indespensable for maintenance of gas flow restriction to a certain low level. To reduce wall thickness, material should be strong to maintain canning strength of substrates. Mechanical strength was improved with high density cordierite. However, isostatic strength of whole substrates was still insufficient with reduced thin walls for canning in spite of the material's high mecanical strength. Discussion is carried out on further possibility of improving canning performance of thin wall substrates as well as flow restriction, and warm up characteristics.
Technical Paper

Prediction of Catalytic Performance during Light-off Phase with Different Wall Thickness, Cell Density and Cell Shape

2001-03-05
2001-01-0930
Further stringent emission legislation requires advanced technologies, such as sophisticated engine management and advanced catalyst and substrate to achieve high catalytic performance, especially during the light-off phase. This paper presents the results of calculations and measurements of hydrocarbon and carbon monoxide light-off performance for substrates of different wall thickness, cell density and cell shapes. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of computer modeling under different temperature ramps and flow rates. The reaction kinetics in the computer modeling are derived from the best fit for the performance of conventional ceramic substrate (6mil/400cpsi), by comparing the theoretical and experimental results on both HC and CO emissions. The calibrated computer model predicts the effects of different wall thickness, cell density and cell shape.
Technical Paper

PSZ Ceramics for Adiabatic Engine Components

1982-02-01
820429
Partially stabilized zirconia is an insulating ceramic which offers high strength, high thermal expansion, and wear resistance. Low thermal conductivity provides the required insulation, high strength improves reliability, and high thermal expansion provides a simple means of attachment for ceramic engine components. Pistons, cylinder liners, and cylinder heads have been insulated with PSZ and engine tested in an adiabatic diesel engine.
Technical Paper

Numerical Study on Forced Regeneration of Wall-Flow Diesel Particulate Filters

2001-03-05
2001-01-0912
A computational model which describes the combustion and heat transfer that takes place during forced regeneration of honeycomb structured wall flow type diesel particulate filter was developed. In this model, heat released by the soot- oxygen reaction, convection heat transfer in the gas phase, conductive heat transfer in solid walls, and heat transfer between the gas and wall of each honeycomb cell at various radial positions in a filter are calculated. Each honeycomb cell was modeled as one solid phase and two gas phases and these three phases were divided in the axial direction into small elements. Conductive heat transfer between the small solid elements and convection heat transfer between the small gas elements were calculated for each small time increment. Conductive radial heat transfer between honeycomb cells was also calculated.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
Video

New Design Concept for Diesel Particulate Filter

2012-02-16
This session focuses on particle emissions from combustion engines, including measurement methods and fuel effects. Presenter Leonidas D. Ntziachristos, Aristotle University Thessaloniki
Technical Paper

Lifetime Prediction of Wall-Flow Type Diesel Particulate Filters Using Fatigue Characteristics

1993-03-01
930128
Lifetimes of DPF under various thermal stress cycles were calculated based on the slow crack growth theory and expected lifetimes were investigated in relation to maximum temperature during regenerations. The fatigue characteristics of porous honeycomb structures follow the slow crack growth theory. Maximum thermal stress was calculated from temperature distributions of failed DPF. The ratio of 4-point bending strength to maximum thermal stress was used as a correction factor. The thermal stress was calculated from various temperature distributions and then modified with the correction factor. These results were compared with the fatigue characteristics obtained from 4-point bending fatigue tests.
Technical Paper

Life Time Prediction of Ceramic Turbocharger Rotor

1986-03-01
860443
Theoretical estimates are made of life time of Ceramic Turbocharger Rotor (CTR) for suitable mechanical design and suitable material selection. Life time of CTR is predicted taking into account the stress-temperature distribution in CTR, required failure probability, volume effect of strength and material properties. Three fatigue failure modes which are slow crack growth, oxidation, and creep failure are considered. The stress-temperature distribution in CTR in operation is estimated by means of Finite Element Method numerical analysis. The probabilistic design map is proposed as a function of turbine inlet temperature and tip speed.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

2003-03-03
2003-01-0661
Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

Hot-Gas Spin Testing of Ceramic Turbine Rotor at TIT 1300° C

1989-02-01
890427
The high-temperature durability of 85 mm tip diameter silicon nitride ceramic radial turbine rotors was evaluated with a hot gas spin test rig. The rotors withstood up to a turbine tip speed of 700 m/s at TIT of 1300°C under partially loaded conditions and 570 m/s at TIT of 1300°C under fully loaded conditions, respectively. The material of the rotors was a post-HIPed silicon nitride. The basic fatigue properties of the material were measured at high temperatures. In the hot gas spin test, the temperature and stress distributions at the turbine blade were calculated with a finite element method. The results of the hot-gas spin test are discussed by means of a failure prediction analysis on the basis of the Weibull statistics.
Technical Paper

Heated Zirconia Exhaust Gas Oxygen Sensor Having a Sheet-Shaped Sensing Element

1985-02-01
850382
This paper describes the design and property of an electrically heated zirconia exhaust gas oxygen sensor having small-sized and sheet-shaped sensing element. Sensing element and sensor have been miniaturized by monolithic formation of sensing element and heater by means of thick-film techniques. The difference in response property according to the angle of the electrode to exhaust gas flow because of the sheet-shaped configuration of sensing element was minimized by proper design of protective cover. Similarity in λ control property and limit cycle frequency was demonstrated with heated zirconia oxygen sensor having test tube-shaped sensing element by engine dynamometer durability test over 120,000 equivalent miles.
Technical Paper

Flat Quartz Angular Rate Sensor for Automotive Applications

2000-03-06
2000-01-0089
A newly designed, flat, angular-rate sensor consisting of T-shaped vibrating resonators using a single quartz crystal has been developed for automotive, chassis-control systems and vehicle navigation systems. For these systems, the sensor is required to be highly stable under operating conditions. Our newly developed sensor's performance is highly reliable because the resonator is made of quartz that is highly stable under operating conditions, especially temperature changes. The newly developed quartz angular sensor is easy to fabricate because it has a 2-dimensional structure. This structure facilitates the mass production of the sensor at low cost; a requirement for automotive industry use. The flat sensor (0.3mm thick) is fabricated from z-cut quartz and shows promising performance for automotive applications. The flat structure also has the advantage of being easily mounted in flat, narrow spaces.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Engine Bench and Vehicle Durability Tests of Si bonded SiC Particulate Filters

2004-03-08
2004-01-0952
Modern filter systems allow a significant reduction of diesel particulate emissions. The new silicon bonded silicon carbide particulate filters (Si-SiC filters) play an important role in this application, because they provide flexibility in terms of mean pore size and porosity and also have a high thermal shock capability to meet both engineering targets and emission limits for 2005 and beyond. Particulate filters are exposed to high temperatures and a harsh chemical environment in the exhaust gas of diesel vehicles. This paper will present further durability evaluation results of the new Si bonded SiC particulate filters which have been collected in engine bench tests and vehicle durability runs. The Si-SiC filters passed both 100 and 200 regeneration cycles under severe ageing conditions and without any problems. The used filters were subjected to a variety of analytical tests. The back pressure and ash distribution were determined. The filter material was also analysed.
Technical Paper

Effect of Cell Shape on Mass Transfer and Pressure Loss

2003-03-03
2003-01-0659
To meet stringent emissions regulations, high conversion efficiency is required. This calls for advanced catalyst substrates with thinner walls and higher cell density. Higher cell density is needed because it brings higher mass transfer from the gas to the substrate wall. Basically, the increase in total surface area (TSA) causes higher mass transfer. However, not only the TSA, but the cell shape also has a great effect on mass transfer. There are two main kinds of substrates. One is the extruded ceramic substrate and the other is the metal foil type substrate. These have different cell shapes due to different manufacturing processes. For the extruded ceramic substrate, it is possible to fabricate various cell shapes such as triangle, hexagon, etc. as well as the square shape. The difference in the cell shape changes not only the mass transfer rate, but also causes pressure loss change. This is an important item to be considered in the substrate design.
Technical Paper

Durability Study on Si-SiC Material for DPF(2)

2004-03-08
2004-01-0951
Among the durability items of the DPF (Diesel Particulate Filter), high accumulated soot mass limit is important for the low fuel consumption and also for the robustness. In case of catalyzed DPF, it depends on the following two properties during soot regeneration. One is the lower maximum-temperature inside of the DPF during usual regeneration in order to preserve the catalyst performance. The other is the higher thermal resistance against the unusual regeneration of excess amount of soot. This paper presents the improvement in the soot mass limit of Si bonded SiC DPF. Maximum-temperature inside of the DPF was lowered by the improvement of thermal conductivity of the material, resulted from the controlling of the microstructure. Additionally the thermal resistance was improved by the surface treatment of the Si and SiC.
Technical Paper

Durability Study on Si-SiC Material for DPF

2003-03-03
2003-01-0384
DPF substrate is exposed to high temperature during regeneration and to acid components in exhaust gas. Therefore, DPF material needs to have an excellent thermal shock resistance, thermal and chemical stability to the sulfuric acid. This paper presents the durability test results of the Si-SiC DPF material. In particular, thermal shock resistance, oxidation resistance and acid resistance parameters have been evaluated by comparison with recrystallized-SiC and cordierite materials. As the results, the strength of Si-SiC decreased between ΔT=500 and 600deg.C, while that of recrystallized-SiC decreased between ΔT=300 and 400deg.C. The result is attributed to the difference in the elastic modulus. About oxidation resistance, material properties of Si-SiC, compared between pre- and post- oxidation, have greater stability than those of recrystallized SiC. And naturally, both SiC materials have superior acid resistance to cordierite.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
X