Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Reliability and Performance Improvement of Close-Coupled Catalytic Converter

1996-02-01
960565
This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441°C despite a catalyst bed temperature of 1050°C. The long term durability of the converter is demonstrated by the hot vibration test.
Technical Paper

The Study for Structural Design of the Segmented SiC-DPF

2006-04-03
2006-01-1527
The application of Diesel Particulate Filters (DPF's) is expanding in the European, Japanese and US markets to comply with the tighter PM regulations. SiC DPF's, featuring greater robustness, have been applied extensively to passenger cars and are expanding into larger sizes for Light Duty Trucks applications. The SiC-DPF has higher mechanical strength when compared to other materials, such as Cordierite. However, SiC's thermal expansion ratio is greater. Therefore, the SiC-DPF is designed with 35 X 35mm segments and cement bonded construction, both of which function to relieve thermal stress. The appearance of the SiC-DPF with the segment design is shown in Figure 1. In this paper, the thermal stress mechanism of the segmented joint during soot regeneration and the influence of the cement properties on the thermal shock resistance was investigated by using the soot regeneration model and thermal stress analysis in addition to the engine test.
Technical Paper

The Regeneration Efficiency Improvement of the Reverse Pulse Air Regenerating DPF System

1996-02-01
960127
This paper describes the system modification through the improvement of pulse air penetration into the DPF cell channels in respect to the development of a wall-flow type diesel particulate filter ( DPF ) system with reverse pulse air regeneration for diesel vehicles. In this system, regeneration becomes more difficult with low exhaust gas temperatures and increased DPF volume. The pressure increase in the DPF cell channels was monitored as a parameter of pulse air penetration when reverse pulse air was injected into the DPF. By maximizing the pressure increase, the pulse air injection system was modified. The modification includes various changes in the air pipe arrangement and the air injecting time. The ratio of the length to the diameter of the DPF was also evaluated in relation to the regeneration efficiency. In this study, the high aspect ratio, i.e. small diameter and long DPF, showed better regeneration efficiency.
Technical Paper

The Effect of SiC Properties on the Performance of Catalyzed Diesel Particulate Filter(DPF)

2003-03-03
2003-01-0383
The DPF(Diesel Particulate Filter) has been established as a key technology in reducing diesel PM emission. Also Catalyzed-DPF Systems are viewed as the next generation DPF System in the automotive sector, replacing the current Fuel Additive System. The performance requirements of the DPF-equipped vehicle are good fuel economy, good driving performance, high PM regeneration performance of accumulated soot and high durability. In this paper the effect of Catalyzed-DPF characteristics, such as porosity, pore size, cell structure and catalyst loading have been defined on pressure drop, filtration efficiency, regeneration efficiency and regeneration behavior.
Technical Paper

The Development of an Automotive Catalyst using a Thin Wall (4 mil/400cpsi) Substrate

1996-02-01
960557
Since the monolithic ceramic substrate was introduced for automotive catalytic converters, the reduction of the substrate wall thickness has been a continuing requirement to reduce pressure drop and improve catalytic performance. The thin wall substrate of 0.10 mm (4 mil) thick wall/400 cpsi cell density has been introduced to production by achieving mechanical strength equivalent to a conventional 0.15 mm (6 mil)/400 cpsi substrate. Although a round cross-section substrate can have a reduced catalyst volume compared to an oval cross-section substrate because of uniform gas flow distribution, the smaller cross-section of the round substrate increases pressure drop. The thin wall technology was applied to the round substrate to offset the pressure drop increase and to further improve catalytic performance.
Technical Paper

Study on Wall Pore Structure for Next Generation Diesel Particulate Filter

2008-04-14
2008-01-0618
A wall flow diesel particulate filter (DPF) having a novel wall pore structure design for reducing backpressure, increasing robustness, and increasing filtration efficiency is presented. The filter offers a linear relationship between soot loading and backpressure, offering greater accuracy in estimating the amount of soot loading from backpressure. Basic experiments were performed on small plate test pieces having various pore structure designs. Soot generated by a Cast-2F propane burner having a controlled size distribution was used. Cold flow test equipment that was carefully designed for flow distribution and soot/air mixing was used for precise measurement of backpressure during soot loading. The upstream and downstream PM numbers were counted by Scanning Mobility Particle Sizer (SMPS) to determine soot concentration in the gas flow and filtration efficiency of the test pieces. Microscope observations of the soot trapped in the wall were also carried out.
Technical Paper

Study on Reliability of Wall-Flow Type Diesel Particulate Filter

2004-03-08
2004-01-0959
In this paper a method of DPF(Diesel Particulate Filter) lifetime estimation against the thermal stress is presented. In the method, experimentally measured material fatigue property and DPF temperature distributions under various conditions including regeneration mode were used to perform FEM stress analyses and the estimation of DPF lifetime and allowable stresses. From the viewpoint of the system design, to prevent DPF damages such as cracks created through thermal stress or melting, controlling the amount of PM accumulation is important. In this study, the pressure difference behavior under each of PM accumulation mode and regeneration mode was investigated experimentally. The experimental results showed different pressure drop behaviors in accumulation and regeneration. DPFs were observed in detail after PM accumulation and during regeneration to discuss mechanisms of the pressure difference behavior.
Technical Paper

Study on Next Generation Diesel Particulate Filter

2009-04-20
2009-01-0292
Although diesel engines are superior to gasoline engines in terms of the demand to reduce CO2 emissions, diesel engines suffer from the problem of emitting Particulate Matter (PM). Therefore, a Diesel Particulate Filter (DPF) has to be fitted in the engine exhaust aftertreatment system. From the viewpoint of reducing CO2 emissions, there is a strong demand to reduce the exhaust system pressure drop and for DPF designs that are able to help reduce the pressure drop. A wall flow DPF having a novel wall pore structure design for reducing pressure drop, increasing robustness and increasing filtration efficiency is presented. The filter offers a linear relationship between PM loading and pressure drop, offering lower pressure drop and greater accuracy in estimating the accumulated PM amount from pressure drop. First, basic experiments were performed on small plate test samples having various pore structure designs.
Technical Paper

Soot Regeneration Model for SiC-DPF System Design

2004-03-08
2004-01-0159
The Diesel Particulate Filter (DPF) system has been developed as one of key technologies to comply with tight diesel PM emission regulations. For the DPF control system, it is necessary to maintain temperature inside the DPF below the allowable service temperature, especially during soot regeneration to prevent catalyst deterioration and cracks. Therefore, the evaluation of soot regeneration is one of the key development items for the DPF system. On the other hand, regeneration evaluation requires a lot of time and cost since many different regeneration conditions should be investigated in order to simulate actual driving. The simulation tool to predict soot regeneration behavior is a powerful tool to accelerate the development of DPF design and safe regeneration control strategies. This paper describes the soot regeneration model applied to fuel additive and catalyzed types, and shows good correlation with measured data.
Technical Paper

Real-Time On-Board Measurement of Mass Emission of NOx, Fuel Consumption, Road Load, and Engine Output for Diesel Vehicles

2000-03-06
2000-01-1141
Regulatory compliance measurements for vehicle emissions are generally performed in well equipped test facilities using chassis dynamometers that simulate on-road conditions. There is also a requirement for obtaining accurate information from vehicles as they operate on the road. An on-board system has been developed to measure real-time mass emission of NOx, fuel consumption, road load, and engine output. The system consists of a dedicated data recorder and a variety of sensors that measure air-to-fuel ratios, NOx concentrations, intake air flow rates, and ambient temperature, pressure and humidity. The system can be placed on the passenger seat and operate without external power. This paper describes in detail the configuration and signal processing techniques used by the on-board measurement system. The authors explain the methods and algorithms used to obtain (1) real-time mass emission of NOx, (2) real-time fuel consumption, (3) road load, and (4) engine output.
Technical Paper

Performance of Next Generation Gasoline Particulate Filter Materials under RDE Conditions

2019-04-02
2019-01-0980
In order to meet the challenging CO2 targets beyond 2020 without sacrificing performance, Gasoline Direct Injection (GDI) technology, in combination with turbo charging technology, is expanding in the automotive industry. However, while this technology does provide a significant CO2 reduction, one side effect is increased Particle Number (PN) emission. As a result, from September 2017, GDI vehicles in Europe are required to meet the stringent PN emission limits of 6x1011 #/km under the Worldwide harmonized Light vehicles Test Procedure (WLTP). In addition, it is required to meet PN emission of 9x1011 #/km under Real Driving Emission (RDE) testing, which includes a Conformity Factor (CF) of 1.5 to account for current measurement inaccuracies on the road. This introduction of RDE testing in Europe and China will especially provide a unique challenge for the design of exhaust after-treatment systems due to its wide boundary conditions.
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
Technical Paper

Numerical Study on Forced Regeneration of Wall-Flow Diesel Particulate Filters

2001-03-05
2001-01-0912
A computational model which describes the combustion and heat transfer that takes place during forced regeneration of honeycomb structured wall flow type diesel particulate filter was developed. In this model, heat released by the soot- oxygen reaction, convection heat transfer in the gas phase, conductive heat transfer in solid walls, and heat transfer between the gas and wall of each honeycomb cell at various radial positions in a filter are calculated. Each honeycomb cell was modeled as one solid phase and two gas phases and these three phases were divided in the axial direction into small elements. Conductive heat transfer between the small solid elements and convection heat transfer between the small gas elements were calculated for each small time increment. Conductive radial heat transfer between honeycomb cells was also calculated.
Technical Paper

Newly Developed Cordierite Honeycomb Substrate for SCR Coating Realizing System Compactness and Low Backpressure

2012-04-16
2012-01-1079
Ammonia Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) systems are key technologies to reduce NOx emission for diesel on-highway vehicles to meet worldwide tighter emission regulations. In addition DeNOx catalysts have already been applied to several commercial off-road applications. Adding the DeNOx catalyst to existing Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) emission control system requires additional space and will result in an increase of emission system back pressure. Therefore it is necessary to address optimizing the DeNOx catalyst in regards to back pressure and downsizing. Recently, extruded zeolite for DeNOx application has been considered. This technology improves NOx conversion at low temperature due to the high catalyst amount. However, this technology has concerned about strength and robustness, because the honeycomb body is composed of catalyst.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
Journal Article

New Design Concept for Diesel Particulate Filter

2011-04-12
2011-01-0603
The Inlet-Membrane DPF, which has a small pore size membrane formed on the inlet side of the body wall, has been developed as a next generation diesel particulate filter (DPF). It simultaneously achieves low pressure drop, small pressure drop hysteresis, high robustness, and high filtration efficiency. Low pressure drop improves fuel economy. Small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between pressure drop and accumulated soot mass improves the accuracy of soot mass detection by means of the pressure drop values. The Inlet-membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performance was evaluated using full block samples in 2009.
Technical Paper

Material Development of High Porous SiC for Catalyzed Diesel Particulate Filters

2003-03-03
2003-01-0380
Low pressure-loss, especially for a catalyzed DPF(Diesel Particulate Filter), is a very significant performance. Higher-porosity DPF materials provide this lower pressure-loss parameter. This paper describes the successful material development of highly porous (up to 65% porosity) SiC materials. In addition, the influence of porosity and pore size distribution on pressure-loss and filtration efficiency with and without various catalyst loadings is presented.
Technical Paper

Lifetime Prediction of Wall-Flow Type Diesel Particulate Filters Using Fatigue Characteristics

1993-03-01
930128
Lifetimes of DPF under various thermal stress cycles were calculated based on the slow crack growth theory and expected lifetimes were investigated in relation to maximum temperature during regenerations. The fatigue characteristics of porous honeycomb structures follow the slow crack growth theory. Maximum thermal stress was calculated from temperature distributions of failed DPF. The ratio of 4-point bending strength to maximum thermal stress was used as a correction factor. The thermal stress was calculated from various temperature distributions and then modified with the correction factor. These results were compared with the fatigue characteristics obtained from 4-point bending fatigue tests.
X