Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Water Supply of the Crew of a Space Station Through Water Recovery and Water Delivery: SRV-K and SPK-U System Operation on ISS

2005-07-11
2005-01-2806
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-10 (since November 2 2000, through November 30, 2004). The water supply sources and structure, consumption and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station’s water supply hardware with a system for water reclamation from urine SRV-U is emphasized. The prospects of regenerative water supply system development are considered.
Technical Paper

Water Recovery on the International Space Station: The Perspectives of Space Stations' Water Supply Systems

2007-07-09
2007-01-3174
The paper summarizes the six years' experience gained with the ISS water management system during the missions ISS-1 through ISS-14 (since November 2, 2000 through October 31, 2006). The water supply sources, consumption structure and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery during space missions and the prospects of regenerative water supply of an interplanetary space station are discussed. The aim of this paper is to summarize the water supply experience and to provide recommendations for a perspective water supply integrated system based on water recovery.
Technical Paper

Water Recovery and Urine Collection in the Service Module of the International Space Station

2001-07-09
2001-01-2355
The paper deals with the construction and performance data of the service module Zvezda water supply system of the International Space Station (ISS). The performance data at an initial phase of manned station functioning are provided. The data on humidity condensate and recovered water composition are reviewed. The water supply and demand balance are analyzed. The effective cooperation of international partners on part of water supply for the crew is shown.
Journal Article

Water Recovery and Urine Collection in the Russian Orbital Segment of the International Space Station (Mission 1 Through Mission 17)

2009-07-12
2009-01-2485
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-17 (since November 2, 2000, through October 23, 2008). The water supply sources and structure, consumption and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine SRV-U is emphasized. The prospects of regenerative water supply system development are considered.
Technical Paper

Water Recovery and Urine Collection Abord the International Space Station

2003-07-07
2003-01-2622
The paper deals with the performance data of the service module Zvezda water supply and urine collection systems of the International Space Station (ISS) as of December 31, 2002. The water supply and demand balance are analyzed. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown.
Technical Paper

Water Recovery and Oxygen Generation by Electrolysis Aboard the International Space Station

2002-07-15
2002-01-2358
The paper deals with the construction and performance data of the service module Zvezda water and oxygen supply systems of the International Space Station (ISS). The performance data at the first 14 months of manned station functioning are provided. The data of humidity condensate and recovered water compositions are reviewed. The water supply and demand balance are analyzed. The system of oxygen generation “Electron-VM” and its functioning results are reviewed. The effective cooperation of the international partners on part of life support is shown.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Urine Pretreatment Configuration and Test Results for Potential Space Station Applications

1998-07-13
981620
Pretreatment of urine using Oxone® and sulfuric acid is baselined in the International Space Station (ISS) waste water reclamation system to control odors, fix Ammonia and control microbial growth. In addition, pretreatment is recommended for long term flight use of urine collection and two phase separation to reduce or eliminate fouling of the associated hardware and plumbing with urine precipitates. This is important to the ISS application because the amount of maintenance time for cleaning and repairing hardware must be minimized. This paper describes the development of a chemical pretreatment system based on solid tablet shapes which are positioned in the inlet urine collection hose and are dissolved by the entrained urine at the proper ratio of pretreatment to urine. Building upon the prior success of the developed and tested solid Oxone tablet, a trade study and tests were completed to confirm if a similar approach would be appropriate for the sulfuric acid injection method.
Technical Paper

The Use of a Total Organic Carbon Analyzer in Testing of Water Recovery Systems for a Space Station

1999-07-12
1999-01-2034
The paper reviews the results obtained with a Sievers-820 total organic carbon (TOC) analyzer during ground tests of the Mir water recovery system (WRS). Calibration analysis results for water solution samples of individual compounds, typical of spacecraft atmospheric humidity condensate, and their mixtures are provided. Comparison of the test results to the calculated data and laboratory analyses performed by other methods are made. Analyzer readings are in good agreement with the chemical analyses of initial condensate and recovered water. The analyzer shows promise as an instrument for ground and future onboard spacecraft testing.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV(Crew Return Vehicle) Orbital Heat Sink

1997-07-01
972411
A porous plate sublimator (an existing Lunar Module design) is being evaluated as the heat sink for the X-38 vehicle due to its simplicity, reliability, and flight readiness. It is ideally suited for the X-38/CRV as it requires no active control, has no moving parts, has 100 % water usage efficiency, and is a well-proven technology. This paper presents sublimator performance, including ground test data at CRV conditions, at both a component and system level. Potential sublimator modifications which could allow significant CRV ECLSS system simplification, reliability enhancement, and cost reduction are also discussed.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

The Performance of the System for Water Recovery from Humidity Condensate (SRV-K) on International Space Station, ISS Missions 1 through 11

2006-07-17
2006-01-2269
The paper summarizes the experience gained with the ISS water management system during the missions ISS-1 through ISS-11 (since November 2 2000, through October 10, 2005). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on board the ISS and the need to supplement the station’s water supply hardware with a system for water reclamation from urine SRV-U is shown. The prospects of regenerative water supply system development are considered.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Testing of Russian ECLSS - Sabatier and Potable Water Processor

1994-06-01
941252
Hamilton Standard Space Systems International, Inc. (HSSSI) has obtained and is currently testing a variety of Russian life support hardware. These units have been or are contemplated for use on Mir I and II space stations. This paper presents the current status of performance testing of a Sabatier Carbon Dioxide Processing Unit (CDPU) and components of a Potable Water Processing System (PWP). These systems were fabricated by NIICHIMMASH, the supplier of these units to the Russian space program. It is the intent of this testing program to obtain a data base for technology comparisons to support planned and future international missions. For the CDPU, reactant conversion efficiencies in excess of 99 percent have been noted for the variation in test conditions with 2 to 6 man processing (flows) tested. The CDPU's effluent water has been produced at anticipated rates and is relatively contaminant free.
Technical Paper

TIMES Regenerator Redesign Description

1999-07-12
1999-01-1990
The TIMES is an evaporative water processor which has shown great theoretical potential for providing reliable and efficient production of high quality water. The test results of the system have however fallen short of the predicted performances. A thorough systems analysis has identified the condensing heat exchanger as a primary source of the shortcomings of the assembly. This condenser, along with three other heat exchangers in the system, have been redesigned and integrated into a new “Regenerator” that is predicted to significantly lower the power consumption and improve both the operating stability and product water quality.
X