Refine Your Search

Topic

Author

Search Results

Journal Article

Virtual Testing and Correlation for a Motorcycle Design

2010-04-12
2010-01-0925
Two-poster rig plays a very important role in accelerated durability evaluation in a motorcycle industry, similar to what a four-poster rig does in a car industry. The rig simulates the exact road conditions in the vertical direction through tire coupling by applying feedback control on displacement. On account of its ability to simulate to the exact customer usage conditions, it reproduces the failures realistically as it happens on the field. However, as complete vehicle is required for testing on the rig, the testing happens mostly in the advanced stages of product development. Any failures beyond the concept stage have a huge impact on the development time and cost and the same should be avoided. Therefore, in this paper, a virtual testing methodology is proposed, based on which potential failures on the vehicles can be captured at the concept design stage itself. An ADAMS model of a motorcycle was created.
Technical Paper

Utilization of Psychophysiological Measurement for Determination of Human State of Mind during Brake Performance Test

2019-01-09
2019-26-0326
This paper reviews psychophysiological measurement applied on humans, by mainly focusing on brain waves observed by EEG sensor placed on scalp during brake performance testing. During braking high physiological stress, response and fear are observed, hence brain waves are monitored during brake test. Brake performance by two drivers (i.e. Driver A & Driver B) significantly established the difference in brain potential between driver A &B. During the test, brake performance parameters such as vehicle speed, deceleration rate, brake force, stopping distance are also measured. Observed EEG signal during the braking event, revealed the difference in emotional status of two different drivers. Signal based on alpha and beta from brainwaves were evident to define the mental stability of the respective driver.
Technical Paper

The Generation of Cyclic Blockloading Test Profiles from Rainflow Histograms

1992-02-01
920664
A numerical method for generating a blockloading profile from a rainflow histogram is described. Unlike previous techniques, this method produces a blockloading profile which, when rainflow-counted, yields a rainflow histogram identical to the original. When implemented with modern data acquisition and signal-processing techniques, this generation method provides a means of developing blockloading test profiles which are correlated with actual service data. This key benefit elevates existing simple testing systems as useful and productive tools despite the emrgence of more complex testing systems.
Technical Paper

The Development of Tools for the Automatic Extraction of Desired Information from Large Amounts of Engineering Data

2001-03-05
2001-01-0707
Product development processes generate large quantities of experimental and analytical data. The data evaluation process is usually quite lengthy since the data needs to be extracted from a large number of individual output files and arranged in suitable formats before they can be compared. When the data quantity grows extremely large, manual extraction cannot be done in a limited timeframe. This paper describes a set of tools developed by MTS engineers to automatically extract the desired information from a large number of files and perform data post-processing. The tools greatly improved both speed and accuracy of the evaluation process during the development of a sound quality-based end-of-line inspection system for seat tracks [1]. It allowed engineers to quickly gather a comprehensive understanding of the relative importance of individual design parameters and of their correlation to the subjective perception of the sound quality of the seat track.
Technical Paper

Study on Polymer Degradation due to Weathering and its Effect on Vehicle Safety

2011-01-19
2011-26-0097
Plastics (polymers) are nowadays clearly a material of choice in all application sectors including in Automobile sector. Automotive manufacturer have relived on new technology for vehicular accessories which are all made-up of different polymers like Acrylonitrile-Butadiene-Styrene (ABS), Poly Carbonates, Poly Methyl Methacrylate (PMMA), Acrylic, glass, resin etc. Although these components offer an impressive range of attractive properties, the effect of climatic conditions on the durability and performance of these materials is not fully understood. The durability, performance and rate of deterioration of these products are all significantly influenced by both the material composition, as well as the climatic conditions to which they are exposed. The degradation/ variation of the mechanical properties of the specimen treated at different environmental/ atmospheric conditions are a primary concern when recommending such a composite for particular use.
Technical Paper

Stress Measurement Techniques for Quantification of Stresses using X Ray Diffraction

2011-01-19
2011-26-0056
Accurate quantification of residual stresses is critical to predict expected fatigue life of the component. Quantification of residual stresses by X ray diffraction method offers substantial accuracy in results as compared to other methods of stress measurements. Depending on component processing and geometry, various stress measurement techniques are used to analyze stress patterns induced by these processing. This paper describes some of the stress measurement techniques by results obtained on two compressor valve (reed) samples which are undergone different processing. First reed sample is analyzed after blanking operation which is expected to give low compressive or tensile stresses whereas second reed sample is analyzed after tumbling operation which is done to get high compressive stresses.
Technical Paper

Reconfiguration of Distribution System Feeder Using Slope Criterion

2008-11-11
2008-01-2916
Distribution System Automation (DSA) is being carried out very seriously world over to enhance the reliability of the system and to minimize the huge losses that are occurring in the Distribution System. Feeder Reconfiguration (FR) is an important sub-problem of the over all distribution system automation process. Basic concept of feeder reconfiguration is to arrive at the best set of sectionalizing switches to be opened for a given set of tie switch such that the system performance is enhanced. In this paper a novel criterion is developed based on the slope of the curve between the feeder losses verses receiving end voltage. Application of this criterion results in the most minimal loss configuration for any given loading condition. A general MATLAB program is developed to obtain the best switching option. The results have been validated by comparison with the civinlar's loss reduction method.
Technical Paper

Racing Motorcycle Design Process Using Physical and Virtual Testing Methods

2000-11-13
2000-01-3576
Recently, the use of laboratory-based physical prototype testing as well as the design of virtual models and virtual test equipment has accelerated the pace and quality of racing vehicle development. In particular, the combined use of both virtual and physical testing, when correlated to racetrack improvements, yields a powerful development tool(1), (2),(3). In this study, we applied these techniques from the first stages of the design of a unique Grand Prix racing motorcycle. First, a wire-frame CAD model, then a parametric CAD solid model of the motorcycle was created after preliminary calculations specified the approximate design of structural elements. Subsequently, a virtual dynamic model was created and subjected to a variety of inputs, including sine sweeps, shaped white noise and simulated road time-histories. Loads and other dynamic responses were measured on the virtual model, so that it's design could then be optimized to yield acceptable performance and durability.
Technical Paper

Optimizing the Strength and Ductility of Al-6061 Alloy by Various Post-Rolling Ageing Treatments

2014-04-28
2014-28-0022
The effect of different cold- rolling and cryo-rolling routes on the strength and ductility of Al-6061 alloy was thoroughly investigated. Rolling decreased the grain size and increased the strength according to the Hall-Petch relationship. However subjecting the samples to ageing at different temperatures and for different time period increased the strength and improved the ductility. The ductility was improved due to the rearrangement and even decrease in dislocation density due to recovery and recrystallization during ageing while the strength was maintained due to ageing. Evolution of microstructure was investigated by optical microscopy, scanning electron microscopy. Preliminary hardness measurements coupled with tensile tests indicate the improvement of both yield strength and ductility. The disparity in ultimate tensile strength, yield strength and the elongation to failure with different ageing temperatures and for different time period is determined and discussed.
Technical Paper

Optimizing Load Transducer Design Using Computer-Based Analytical Tools

2001-03-05
2001-01-0787
Rapid development of advanced multi-axial load transducer systems now requires the use of computer-based analytical tools to assist the development engineer optimize the design to meet often-conflicting design targets. This paper presents a case study based on the development of a wheel force load transducer to meet a challenging set of performance goals including accuracy, repeatability, durability and insensitivity to the external environment. The paper also highlights the limitations of some of the current analytical tools when used for load transducer design, and how these limitations can be overcome by cost-effective combinations of analytical performance prediction and physical test confirmation.
Technical Paper

Numerical and Experimental Analysis of Intake Flow Structure and Swirl Optimization Strategies in Four-Valve Off-Highway Diesel Engine

2019-01-09
2019-26-0042
Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimizing engineering costs. DI diesel engines with four valves per cylinder are widely used in off- highway applications because of the fundamental advantages of higher volumetric efficiency, lower pumping loss, symmetric fuel spray & distribution in combination with the symmetric air motion which can give nearly optimal mixture formation and combustion process. As a result, the fuel consumption, smoke levels and exhaust emissions can be considerably reduced. In particular, the four-valve technology, coupled with mechanical low pressure and electronic high pressure fuel delivery systems set different requirements for inlet port performance. In the present paper four valve intake port design strategies are analysed for off highway engine using mechanical fuel injection systems.
Technical Paper

Motorcycle Suspension Development Using Ride Comfort Analysis with a Laboratory Test System

1999-09-28
1999-01-3276
An analytical approach to developing motorcycle suspensions is presented. Typical uncontrolled and subjective evaluations that place limits on suspension development are curtailed through the use of a laboratory-based road simulation technique, which evaluates vehicle ride quality. Ride comfort is calculated using a specifically tailored NASA model after primary and secondary frequency regimes have been established for this type of motorcycle. Correlation between road and laboratory simulation is measured and compared to the road data variance. A designed experiment evaluates changes in ride quality as a function of suspension and tire pressure adjustments. Various suspension settings are repeated on the simulator and corresponding ride numbers are calculated for both environments. An analysis is performed to correlate ride quality improvements on the simulator with ride quality improvements in the field.
Technical Paper

Monitoring of In-use Vehicle Emissions in India

1998-05-04
981379
The exhaust emission legislation for automotive vehicles came into effect in India from 1991. Since then, the exhaust mass emission certification tests are conducted on a prototype vehicle for emission compliance before commencing commercial production. The exhaust emission norms are reviewed and tightened after every five years. This should lead to a better emission control system in new vehicles. But the old vehicles which are designed prior to emission control era continue to emit heavily due to their inherent design and condition. The problem of in use vehicle emissions will be on the rise with the low scrappage rate of old vehicles in India. The impact of implementing tighter norms for new vehicles on ambient air quality can be felt only after a period of about 10 years. To have an effective improvement in ambient air quality levels, it is necessary to identify the gross polluters and retune them for bringing their emissions to an acceptable level.
Technical Paper

Method for Prediction of Coffin Manson Parameters from Monotonic Tensile Property for Aluminium 6XXX Series Alloy to Predict Fatigue Life

2019-01-09
2019-26-0314
Light weighting is significant in for automotive industry as it helps in less fuel consumption and to achieve better performance. Aluminium is a candidate material for light weighting. To design a component made of aluminium material, it is necessary to understand the fatigue performance of the material. In this paper, a study is carried out to understand the fatigue performance of aluminium 6xxx series alloys at an early stage of design without carrying out comprehensive fatigue testing. Coffin Manson Parameters are used to predict fatigue life. This research focusses on determining the gaps in existing models for aluminium alloys by carrying out comprehensive review of various models developed for 6xxx series which uses monotonic tensile data. Two models are developed and the predicted fatigue properties for this class of material are further compared with experimental fatigue, monotonic data and literature.
Technical Paper

Literature Review and Simulation of Dual Fuel Diesel-CNG Engines

2011-01-19
2011-26-0001
Dual fuel operating strategy offers great opportunity to reduce emissions like particulate matter and NOx from compression ignition engine and use of clearer fuels like natural gas. Dual-fuel engines have number of potential advantages like fuel flexibility, lower emissions, higher compression ratio, better efficiency and easy conversion of existing diesel engines without major hardware modifications. In view of energy depletion and environmental pollution, dual-fuel technology has caught attention of researchers. It is an ecological and efficient combustion technology. This paper summarizes a review of recent research on dual-fuel technology and future scope of research. Paper also throws light on present limitations and drawbacks of dual-fuel engines and proposed methods to overcome these drawbacks. A parametric study of different engine-operating variables affecting performance of diesel-CNG dual-fuel engines vis-à-vis base diesel operation is also summarized here.
Technical Paper

LEAN Techniques for Effective, Efficient and Secure Information Processing in Automotive Homologation

2019-01-09
2019-26-0335
It is an established fact that virtual knowledge based engineering has revolutionized R & D activities by streamlining processes, ensuring productivity and accuracy. This has resulted in freeing up time for quality interpretational work and decision making for engineering the best of products. Subsequently, homologation is a mandatory requisite activity for product signoff. It certifies the quality of the product and is an important factor in giving the product an authenticity for sale in the market. Homologation entails compliance to regulations existing in form of well-established standards which elaborate systematic and detailed guidelines on conducting physical testing for automotive systems, sub-systems or components for specific vehicle types.
Technical Paper

Integration of Real and Virtual Tools for Suspension Development

2011-01-19
2011-26-0115
Suspension development is one of the key steps in a complete vehicle development program. Computer simulation and analysis tools such as Multi Body Dynamics (MBD) simulation are used to refine initial concept and suspension parameters. Later on when a physical prototype is available the suspension system can be experimentally optimized at vehicle level. In this paper a new methodology is proposed which integrates virtual and experimental tools so that design, development and validation of the suspension system is carried out in the early phase of the vehicle development cycle with actual suspension components and without the need of a vehicle prototype. With this new approach, the design of any critical suspension components such as dampers can be optimized at the vehicle level. The new approach consists of combining the actual physical components on loading rig in closed loop with vehicle dynamic model running in real time.
Technical Paper

Influence of Rake Angle and Cutting Speed on Residual Stresses Developed in Cutting Tool during Turning Operation

2014-04-28
2014-28-0014
In this work, the effect of tool rake angle and cutting speed on residual stresses of tool was studied, the rake angles of 0°, 5°, 10°, 15°, and 20° and a constant clearance (Relief angle) of 8° were used to turn bright mild steel on the lathe machine, A total of 15 experiments were carried out with three different cutting speeds (37.69, 59.37, 94.24 m/min) for each rake angle, keeping the feed rate and depth of cut constant. During the experimentation, the residual stresses were measured using an x-ray diffractiometer. This is all in order to explore the energy savings opportunities during regrinding of tools, useful production time and energy is being wasted due to regrinding or re-sharpening of tools when cutting tools got worn or blunt, selection of the rake angle which generate the optimum residual stresses in the tool, goes a long way in saving these time and energy.
Technical Paper

Digitally Controlled Servo-Hydraulic Crash Simulator

2000-03-06
2000-01-0048
The value of crash simulation has long been recognized by carmakers as an essential tool for vehicle development and certification programs. Driven by the need to minimize time-to-market for new models, cost reduction, and by consumer demand for safer cars and trucks, the industry is moving to newer technologies in crash simulation. Crash simulation provides an inexpensive means to quickly simulate the effects of a barrier crash by reproducing its basic elements - acceleration, velocity and displacement - in a nondestructive test. Crash event timing and accuracy of reproduction are critical performance factors. This paper describes the unique features and capabilities offered by a new generation of crash simulators.
Technical Paper

Development of an Innovative Transmission System for Two-Wheelers Using TRIZ Methodology

2019-01-09
2019-26-0369
In a developing country like India, Two-wheelers dominate the automotive market with around 80% market shares. In Indian city traffic conditions, driving a two wheeler is a tiresome job. Manual transmission makes this task even further uncomfortable. So an automatic transmission is a better solution. A new automatic transmission system is developed which can reduce fatigue of drivers. Steps of ARIZ (Algorithm for Inventive Problem Solving) were followed. Ideas or concepts for the design were proposed from various fields and were compared for various parameters like size, weight, complexity, manufacturability, feasibility, efficiency and cost. They were also compared with the existing transmission systems. Based upon the results of the comparison, 5 designs were selected and they were analyzed thoroughly. Finally one design was selected.
X