Refine Your Search

Topic

Search Results

Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

The Department of Energy's Hydrogen Safety, Codes, and Standards Program: Status Report on the National Templates1

2006-04-03
2006-01-0325
A key to the success of the national hydrogen and fuel cell codes and standards developments efforts to date was the creation and implementation of national templates through which the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and the major standards development organizations (SDOs) and model code organizations coordinate the preparation of critical standards and codes for hydrogen and fuel cell technologies and applications and maintain a coordinated national agenda for hydrogen and fuel cell codes and standards
Technical Paper

The DOE/NREL Environmental Science Program

2001-05-14
2001-01-2069
This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.
Technical Paper

The DOE/NREL Environmental Science & Health Effects Program - An Overview

1999-04-27
1999-01-2249
This paper summarizes current work in the Environmental Science & Health Effects (ES&HE) Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. The goal of the ES&HE Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based and alternative transportation fuels. Each project in the program is designed to address policy-relevant objectives. Studies in the ES&HE Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements, emission inventory development/improvement; and ambient impacts, including health effects.
Technical Paper

Simulating Physiological Response with a Passive Sensor Manikin and an Adaptive Thermal Manikin to Predict Thermal Sensation and Comfort

2015-04-14
2015-01-0329
Reliable assessment of occupant thermal comfort can be difficult to obtain within automotive environments, especially under transient and asymmetric heating and cooling scenarios. Evaluation of HVAC system performance in terms of comfort commonly requires human subject testing, which may involve multiple repetitions, as well as multiple test subjects. Instrumentation (typically comprised of an array of temperature sensors) is usually only sparsely applied across the human body, significantly reducing the spatial resolution of available test data. Further, since comfort is highly subjective in nature, a single test protocol can yield a wide variation in results which can only be overcome by increasing the number of test replications and subjects. In light of these difficulties, various types of manikins are finding use in automotive testing scenarios.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Technical Paper

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
Technical Paper

Predicting Human Thermal Comfort in Automobiles

2005-05-10
2005-01-2008
The National Renewable Energy Laboratory (NREL) has developed a suite of thermal comfort tools to help develop smaller and more efficient climate control systems in automobiles. The tools consist of a thermal comfort manikin, physiological model, and psychological model that are linked together to assess comfort in a transient non-homogeneous environment. The manikin, which consists of 120 individually controlled zones, mimics the human body by heating, sweating, and breathing. The physiological model is a 40,000-node numerical simulation of the human body. The model receives heat loss data from the manikin and predicts the human physiological response and skin temperatures. Based on human subject test data, the psychological model takes the temperatures of the human and predicts thermal sensation and comfort.
Technical Paper

Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

2006-07-17
2006-01-2239
An ADvanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA’s liquid cooling garments (LCGs) used in advanced spacesuits. The manikin has 120 separate heated/sweating zones and is controlled by a finite-element physiological model of the human thermo-regulatory system. Previous testing showed the thermal sensation and comfort followed expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/arctic suit combination are compared to NASA physiological data to validate the manikin/model. An additional Orlan LCG configuration is assessed using the manikin and compared to the baseline LCG.
Technical Paper

Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

2015-09-29
2015-01-2812
This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method.
Technical Paper

LNG Truck Demonstration

2002-10-21
2002-01-2740
Among on-road motor vehicles, diesel-fueled heavy-duty trucks emit disproportionately high amounts of oxides of nitrogen (NOx) and particulate matter (PM). The trucking industry has taken an active interest in the use of engines powered by liquefied natural gas (LNG) to reduce NOx and PM emissions. However, major barriers exist to widespread use of LNG in trucking applications, including reduced performance and higher initial capital costs compared to diesel-fueled vehicles, as well as a limited fueling infrastructure. To help address these barriers, the California Energy Commission (Commission) joined with the South Coast Air Quality Management District (SCAQMD) and the U.S. Department of Energy's National Renewable Energy Laboratory (DOE/NREL) in cost sharing a program led by the West Coast Transportation Technology Group of Arthur D. Little, Inc. (ADLittle).
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Technical Paper

Impact of Biodiesel Blends on Fuel System Component Durability

2006-10-16
2006-01-3279
An ultra-low sulfur diesel (ULSD) fuel was blended with three different biodiesel samples at 5 and 20 volume percent. The biodiesel fuels were derived from rapeseed and soybean oils, and in addition, a highly oxidized biodiesel was prepared from the soy biodiesel by oxidation under controlled conditions. A set of five elastomers commonly used in automotive fuel systems were examined before and after immersion in the six test blends and base fuel at 60°C for 1000 hours. The elastomers were evaluated for hardness, tensile strength, volume change and compression. Injector wear tests were also conducted on the base petrodiesel fuel and the biodiesel blends using a 500-hour test method developed for this study. Bosch VE (in-line) rotary pumps were evaluated for wear after testing for 500 hours on the base fuel, B5 and B20 test fuels. Additionally, a test procedure was developed to accelerate wear on common rail pumps over 500 hours.
Technical Paper

Heat-Generated Cooling Opportunities in Vehicles

2002-06-03
2002-01-1969
Utilizing heat-generated cooling in vehicles offers the opportunity to reduce the amount of fuel used today for air conditioning. The U.S. uses approximately 7.1 billion gallons of gasoline each year for air conditioning in vehicles. By using waste heat as the primary energy source for heat-generated cooling, we have the potential to reduce the national fuel use by 7.1 billion gallons. An engine operating at a 30% thermal efficiency releases the remaining 70% of the fuel energy as waste heat through the coolant, exhaust gases, and engine compartment. Waste heat available for a representative 115-kW engine varies from 20 to 400 kW across the engine map, with an average value over the FTP cycle of 23 kW. Temperatures of the waste heat range from 200°C surface temperatures to 600°C gas temperatures. Therefore, the magnitude of energy currently wasted is significant, and a large opportunity exists to utilize this waste heat for productive purposes.
Technical Paper

Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach

2002-06-03
2002-01-1957
How much fuel does vehicle air conditioning actually use? This study attempts to answer that question to determine the national and state-by-state fuel use impact seen by using air conditioning in light duty gasoline vehicles. The study used data from US cities, representative of averages over the past 30 years, whose temperature, incident radiation, and humidity varied through time of day and day of year. National surveys estimated when people drive their vehicles during the day and throughout the year. A simple thermal comfort model based on Fanger's heat balance equations determined the percentage of time that a driver would use the air conditioning based on the premise that if a person were dissatisfied with the thermal environment, they would turn on the air conditioning. Vehicle simulations for typical US cars and trucks determined the fuel economy reduction seen with AC use.
Technical Paper

Example of a Prototype Lightweight Solar Array and the Three Promising Technologies It Incorporates: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures

1999-08-02
1999-01-2550
As the size of spacecraft decreases, the contribution of the power subsystem to the overall spacecraft weight significantly increases. This paper will focus on describing a prototype solar array utilizing three promising technologies to significantly reduce weight, deploy with low shock, and increase packaging efficiency of the solar power system. These technologies are: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures. Recent advances in shape memory alloy devices, ultralight composites, along with thin-film copper indium diselenide (CIS or CuInSe2) photovoltaics (PV), have shown the potential of providing solar array systems with overall array specific power of >100 W/kg. This results in solar arrays that are a factor of 5 lighter than the current state-of-the-practice, and a factor of 3 lighter than the state-of-the-art.
X