Refine Your Search


Search Results

Viewing 1 to 15 of 15
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

SULEV and “Off-Cycle” Emissions Benefits of a Vacuum-Insulated Catalytic Converter

In previous SAE papers, the initial development and testing of a vacuum-insulated catalytic converter was presented. This paper provides an update of the converter development and an analysis of potential off-cycle emissions savings. Hot vibration, cool-down, and 1975 Federal Test Procedure (FTP-75) emissions test results are provided to demonstrate the effectiveness of design improvements in greatly increasing durability while retaining performance. Using standard drive cycles and “real-world” driving statistics with a vehicle simulator (ADVISOR©), catalyst temperature and vehicle exhaust emissions of a sport utility vehicle (SUV) were predicted for 16 days of driving (107 trips, 770 total miles). Compared to the baseline vehicle with a conventional catalytic converter, the SUV with a vacuum-insulated converter produced 66% less non-methane hydrocarbon (NMHC), 65% less carbon monoxide (CO), and 60% less oxides of nitrogen (NOx).
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Example of a Prototype Lightweight Solar Array and the Three Promising Technologies It Incorporates: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures

As the size of spacecraft decreases, the contribution of the power subsystem to the overall spacecraft weight significantly increases. This paper will focus on describing a prototype solar array utilizing three promising technologies to significantly reduce weight, deploy with low shock, and increase packaging efficiency of the solar power system. These technologies are: Copper Indium DiSelenide (CIS) Thin-Film Photovoltaics, Smart Mechanisms Employing Shape Memory, and Multifunctional Structures. Recent advances in shape memory alloy devices, ultralight composites, along with thin-film copper indium diselenide (CIS or CuInSe2) photovoltaics (PV), have shown the potential of providing solar array systems with overall array specific power of >100 W/kg. This results in solar arrays that are a factor of 5 lighter than the current state-of-the-practice, and a factor of 3 lighter than the state-of-the-art.
Technical Paper

Emission Reductions and Operational Experiences With Heavy Duty Diesel Fleet Vehicles Retrofitted with Continuously Regenerated Diesel Particulate Filters in Southern California

Particulate emission control from diesel engines is one of the major concerns in the urban areas in California. Recently, regulations have been proposed for stringent PM emission requirements from both existing and new diesel engines. As a result, particulate emission control from urban diesel engines using advanced particulate filter technology is being evaluated at several locations in California. Although ceramic based particle filters are well known for high PM reductions, the lack of effective and durable regeneration system has limited their applications. The continuously regenerated diesel particulate filter (CRDPF) technology discussed in this presentation, solves this problem by catalytically oxidizing NO present in the diesel exhaust to NO2 which is utilized to continuously combust the engine soot under the typical diesel engine operating condition.
Technical Paper

Effect of Solar Reflective Glazing on Ford Explorer Climate Control, Fuel Economy, and Emissions

The energy used to air condition an automobile has a significant effect on vehicle fuel economy and tailpipe emissions. If a small reduction in energy use can be applied to many vehicles, the impact on national fuel consumption could be significant. The SCO3 is a new emissions test conducted with the air conditioner (A/C) operating that is part of the Supplemental Federal Test Procedure (SFTP). With the 100% phase-in of the SFTP in 2004 for passenger cars and light light-duty trucks, there is additional motivation to reduce the size of the A/C system. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is investigating ways to reduce the amount of energy consumed for automobile climate control. If the peak soak temperature in an automobile can be reduced, the power consumed by the air conditioner may be decreased while passenger comfort is maintained or enhanced. Solar reflective glass is one way to reduce the peak soak temperature.
Technical Paper

EC-Diesel Technology Validation Program Interim Report

ARCO has developed diesel fuel called Emission Control Diesel (EC-D) that results in substantially lower exhaust emissions compared to a typical California diesel fuel. EC-D has ultra-low sulfur content, low aromatics, and has a high cetane number. EC-D is produced from typical crude oil using a conventional refining process. Initial engine laboratory tests and vehicle tests indicated that EC-D reduced regulated emissions while maintaining fuel economy, compared to a typical California diesel fuel. Ultra-low sulfur diesel fuels such as EC-D may enable the widespread use of passive catalyzed particulate filters for both new and existing diesel engines. The use of catalyzed particulate filters could allow large reductions of particulate matter emitted from vehicles. A one-year technology validation program is being run to evaluate EC-D and catalyzed particulate filters using diesel vehicles operating in Southern California.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Comparison of Indoor Vehicle Thermal Soak Tests to Outdoor Tests

Researchers at the National Renewable Energy Laboratory conducted outdoor vehicle thermal soak tests in Golden, Colorado, in September 2002. The same environmental conditions and vehicle were then tested indoors in two DaimlerChrysler test cells, one with metal halide lamps and one with infrared lamps. Results show that the vehicle's shaded interior temperatures correlated well with the outdoor data, while temperatures in the direct sun did not. The large lamp array situated over the vehicle caused the roof to be significantly hotter indoors. Yet, inside the vehicle, the instrument panel was cooler due to the geometry of the lamp array and the spectral difference between the lamps and sun. Results indicate that solar lamps effectively heat the cabin interior in indoor vehicle soak tests for climate control evaluation and SCO3 emissions tests. However, such lamps do not effectively assess vehicle skin temperatures and glazing temperatures.
Technical Paper

Central Carolina Vehicle Particulate Emissions Study

In-use, light-duty vehicles were recruited in Cary, North Carolina for emissions testing on a transportable dynamometer in 1999. Two hundred forty-eight vehicles were tested in as received condition using the IM240 driving cycle. The study was conducted in two phases, a summer and winter phase, with half of the vehicles recruited during each phase. Regulated emissions, PM10, carbonaceous PM, aldehydes and ketones were measured for every test. PM2.5, individual volatile hydrocarbons, polycyclic aromatic hydrocarbons, sterane and hopane emissions were measured from a subset of the vehicles. Average light-duty gasoline PM10 emission rates increased from 6.5 mg/mi for 1993-97 vehicles to 53.8 mg/mi for the pre-1985 vehicles. The recruited fleet average, hot-stabilized IM240 PM10 emission rate for gasoline vehicles was 19.0 mg/mi.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.