Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Validation Testing of Lithium Battery Performance-Based Packaging for Use in Air Transportation (SAE G-27)

2020-03-10
2020-01-0042
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard.
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
Technical Paper

Progress towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach

2015-06-15
2015-01-2162
We have developed an original, three-dimensional icing modelling capability, called the “morphogenetic” approach, based on a discrete formulation and simulation of ice formation physics. Morphogenetic icing modelling improves on existing ice accretion models, in that it is capable of predicting simultaneous rime and glaze ice accretions and ice accretions with variable density and complex geometries. The objective of this paper is to show preliminary results of simulating complex three-dimensional features such as lobster tails and rime feathers forming on a swept wing. The results are encouraging. They show that the morphogenetic approach can predict realistically both the overall size and detailed structure of the ice accretion forming on a swept wing. Under cold ambient conditions, when drops freeze instantly upon impingement, the numerical ice structure has voids, which reduce its density.
Technical Paper

NRC Particle Detection Probe: Results and Analysis from Ground and Flight Tests

2019-06-10
2019-01-1933
High altitude ice crystals are causing in-service events in excess of one per month for commercial aircraft. The effects include air data probes malfunctioning (pitot pressure and total air temperature in particular), and uncommanded engine power loss or flameout events. The National Research Council Canada (NRC) has developed a particle detection probe (PDP) that mounts on the fuselage of aircraft to sense and quantify the ice crystals in the environment. The probe is low-power and non-intrusive. This paper presents the results of ground and flight testing of this probe. Results are presented for ground testing in a sea level ice crystal wind tunnel and an altitude icing tunnel capable of generating both ice crystal and super-cooled liquid. The PDP was operated on several flight campaigns and the results of two will be presented.
Technical Paper

Experimental and Numerical Ice Accretion Shapes on a Pitot Probe Model

2023-06-15
2023-01-1370
This paper presents experimental ice accretion measurements alongside numerical simulations, using the National Research Council Canada’s morphogenetic approach, on a pitot probe geometry at varying icing conditions. In previous publications, the morphogenetic approach for the numerical simulation of ice accretion has shown promise for pitot probe applications, potentially reducing the number of wind tunnel entries, and therefore cost, of the development cycle. An experimental campaign has been completed, providing ice shapes on a representative pitot probe model. Comparison of the experimental and numerical ice shapes indicate that the morphogenetic model is able to generate the complex ice shapes seen experimentally for real-world icing conditions on a fully 3D geometry, closely matching both ice features and total ice thicknesses.
Technical Paper

Design, Characterization and Initial Testing of a Vertical Stabilizer Common Research Model for Aircraft Ground Icing Testing

2023-06-15
2023-01-1439
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°.
Technical Paper

Comparability of Hot-Wire Estimates of Liquid Water Content in SLD Conditions

2023-06-15
2023-01-1423
Future compliance to FAA 14 CFR Part 25 and EASA CS-25 Appendix O conditions has required icing wind tunnels to expand their cloud simulation envelope, and demonstrate accurate calibration of liquid water content and droplet particle size distributions under these conditions. This has led to a renewed community interest in the accuracy of these calibrations, and the potential inter-facility bias due to the choice of instrumentation and processing methods. This article provides a comparison of the response of various hot-wire liquid water content instruments under Appendix C and supercooled large droplet conditions, after an independent similar analysis at other wind tunnel facilities. The instruments are being used, or are under consideration for use, by facilities collaborating in the ICE GENESIS program.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
X