Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Trapping Performance of Fine Particles from a Diesel Engine by Various DPFs with Different Surface Structures

2004-03-08
2004-01-0598
The regulation of particulate matter (PM) from diesel engines is coming to be very stringent at present. The usage of diesel particulate filter (DPF) is now under consideration in many heavy-duty diesel vehicle manufacturers to reduce PM emission from a diesel engine. The possibility that very fine particles may pass through DPF is suggested. The understanding of fine particles emission behaviors and the countermeasure of reducing particle emissions from DPF will come to be important in near future. The behavior of particle size distribution after DPF has not been studied enough yet. In this study, fine particles generated by a diesel engine are introduced to honeycomb type and SiC (Silicon Carbite) fiber type DPFs and the collection performances of fine particles by various DPFs with different surface structures have been examined.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Tractive Torque Steer for On-Center Stability1 Handling Augmentation with Controlling Differential Gear for Large-Sized Vehicles - A Comparison with Passive Read-Axle Steer

1991-11-01
912688
The running direction of a vehicle can be controlled by not only wheel steer but also torque steer. This paper introduces the tractive torque steer effect produced by a newly developed electropneumatic control system, the limited-slip differential for large-sized vehicles. This system enhances the vehicle's running stability and controllability by controlling the tractive force of the drive axle. The tractive force maintains a stable running course against disturbances such as road roughness and wind gusts, thereby enhancing the steering response and providing a better feeling of handling to the driver. The system also improves mobility. especially on low-μ roads. It is expected that a single axle equipped with this system will exhibit good performance comparable to that of tandem axle.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for FCV on Fast Filling (2nd Report)

2008-04-14
2008-01-0463
If a compressed hydrogen tank for vehicles is filled with hydrogen gas more quickly, the gas temperature in the tank will increase. In this study, we conducted hydrogen gas filling tests using the TYPE 3 and TYPE 4 tanks. During the tests, we measured the temperature of the internal liner surface and investigated its relationship with the gas temperature in the tank. We found that the gas temperature in the upper portion of the TYPE 4 tank rose locally during filling and that the temperature of the internal liner surface near that area also rose, resulting in a temperature higher than the gas temperature at the center of the tank. To keep the maximum temperature in the tank below the designed temperature (85°C) during filling and examine the representative tank internal temperatures, it is important to examine filling methods that can suppress local rises of tank internal temperature.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle

1999-03-01
1999-01-0471
To reduce emissions from diesel engines, the effects of oxidation catalysts on the emissions reductions were studied. The effectiveness of several oxidation catalysts on both the regulated and unregulated emissions was evaluated. The oxidation activity of the catalysts was varied by changing Pt loading. The regulated emissions include particulate (PM), hydrocarbon (HC), and carbon monoxide (CO), and the unregulated emissions include benzene, formaldehyde, acetaldehyde, and benzo[a]pyrene (B[a]P). An 8 litter, turbocharged and aftercooled diesel engine was operated under the Japan Diesel 13 (D13) mode cycle for the evaluations. As the first step, evaluations were conducted with a commercially available JIS #2 diesel fuel (0.046 wt% sulfur). All the regulated and unregulated emissions except PM were reduced as the Pt loading (i.e. oxidation activity) increased. However, PM emissions were increased by the generation of sulfate when the Pt loading exceeded 0.2 g/l.
Technical Paper

The Performance of a Diesel Engine for Light Duty Truck Using a Jerk Type In-Line DME Injection System

2004-06-08
2004-01-1862
Over the last few years much interest has been shown in Dimethyl Ether (DME) as a new fuel for diesel cycle engines. DME combines the advantages of a high cetane number with soot-free combustion, making it eminently suitable for compression engines. According, however, to past engine test results, the engine output of a DME engine lacking compatibility as a DME injection system, is low in comparison with a diesel engine. Required is development of a DME injection system conforming to DME properties. The purpose of this work is to investigate the feasibility of DME application for a conventional jerk-type in-line injection system that has the actual result of use of a comparatively low lubricity fuel such as methanol.
Technical Paper

The Influence of Fuel Components on PM and PAH Exhaust Emissions from a DI Diesel Engine - Effects of Pyrene and Sulfur Contents-

2001-09-24
2001-01-3693
Particulate matter (PM) and polynuclear aromatic hydrocarbons (PAH) were measured under steady state engine operating conditions in the exhaust of a DI diesel engine that meets the Japanese 1994 heavy-duty vehicle standards. In this study, to examine and discuss the effects of pyrene and sulfur contents in fuels on PM and PAH emissions, experiments were performed using both ordinary diesel fuel and a specified fuel having simple hydrocarbon components and very few aromatics. In the experiments, pyrene and sulfur contents in the fuels were changed by the addition of reagents to the fuel. The following conclusions were obtained. (1) From the experiments using ordinary JIS No. 2 diesel fuel with a pyrene reagent added to yield 400ppm pyrene, it was found that pyrene addition brings about an increase in soluble organic fraction (SOF) under low load engine operating conditions.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Technical Paper

The Development of High-Performance Viscous-Rubber Damper for Higher Boost Turbocharged and Charge-Cooled Diesel Engine

1991-02-01
910630
A newly developed viscous-rubber damper, which employed an innovative structure and a new heat resistant rubber, solved some tough problems. This paper dealt more closely with the features of the new viscous-rubber damper and the new calculation method for the viscous-rubber damper. This damper has been employed for Hino new K13C (K-II) higher boost turbocharged and air to air charge-cooled diesel engine, which has extreme severity on the torsional vibration.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Temperature Measurements of Combustion Gas in a Spark Ignition Engine By Infrared Monochromatic Pyrometry

1989-11-01
891258
Instantaneous temperature of in-cylinder gas provides a lot of useful and local information for analyzing the combustion process in an internal combustion engine. From the standpoint of applicability to a practical engine, the infrared monochromatic radiation pyrometry required only a single optical window is considered to be more suitable comparing with the conventional infrared absorption-emission pyrometry with two optical windows. Then, the former pyrometer is used to measure the mean gas temperatures averaged on an optical path (or cylinder diameter) of a spark ignition engine connected to a prechamber with a torch nozzle of various area sizes. These measured temperature-crankangle diagrams not only clarify the influences of torch jet flow on the combustion processes, but also correspond well to the heat release rates calculated from the pressure diagrams.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
X