Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Study on Realization of Dual Combustion Cycle by Lean Mixture and Direct Fuel Injection

2018-10-30
2018-32-0011
The purpose of this study is to realize dual-combustion cycle for gasoline engines. For the purpose, lean combustion and direct fuel injection were applied to small diesel engine. The lean gasoline-air mixture was provided and was ignited by small amount of pilot diesel fuel injection (constant volume combustion). Then, diesel fuel was injected by main injection and was burned with the remained oxygen after the lean combustion (diffusion combustion). The equivalence ratio 0.3, 0.4 and 0.5 of mixture were used to avoid the spontaneous compression auto-ignition. The total equivalence ratio with supplied gasoline and diesel fuel was adjusted to 1.0. The base pilot injection timing was selected as the ignition of pre-mixture took place at T.D.C. and pilot injection timings were changed 2 degree before and behind of base timing. The main fuel injection timings were 50, 75 and 100% of the duration between pilot injection timing and T.D.C.
Technical Paper

Study on Knocking Characteristics for High-Efficiency Operation of a Super-Lean Spark Ignition Engine

2018-10-30
2018-32-0002
This study investigated the influence of EGR and spark advance on knocking under high compression ratio, ultra-lean mixture and supercharged condition using premium gasoline as a test fuel. A high-compression ratio, supercharged single cylinder engine was used in this experiment. As a result, the period from ignition to autoignition was prolonged. In addition, knock intensity was drastically reduced. In other words, it is inferred that by combining an appropriate amount of EGR and spark advance, high efficiency operation avoiding knocking can be realized.
Technical Paper

Study on Combustion and Exhaust Gas Emission Characteristics of Lean Gasoline-Air Mixture Ignited by Diesel Fuel Direct Injection

1998-10-19
982482
The uniform lean gasoline-air mixture was provided to diesel engine and was ignited by direct diesel fuel injection. The mixing region that is formed by diesel fuel penetration and entrainment of ambient mixture is regarded as combustible turbulent jet. The ignition occurs in this region and the ambient lean mixture is burned by flame propagation. The lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An increase of diesel fuel injection is effective to ensure combustion and ignition. As diesel fuel injection increases, HC concentration decreases, and NOx and CO concentration increases.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

On a Development of Two Wheeled Vehicle Riding Simulator

1997-10-27
978501
This paper describes a fundamental design for a riding simulator of two wheeled vehicle which is used to analyze the human factor of riders. At the first step of this research, the relationship between the movement of rider and behavior of a two wheeled vehicle is inquired with experiments on a proving ground. Based on the results, the degrees of freedom which is required by simulator and main input of rider are settled. This study goes along examination of the expression method of simulated movements, and production of the riding simulator.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Laser Breakdown-Assisted Long-Distance Discharge Ignition

2015-09-01
2015-01-1897
We developed a novel ignition method called laser breakdown-assisted long-distance discharge ignition (LBALDI) that combines laser breakdown with a discharge to realize lean combustion. The creation of laser breakdown plasma between electrodes for discharge enables discharges over longer distances than those of conventional sparkplug as inferred from laser-triggered lightning or laser-triggered gas switches. This method should help realize volumetric ignition through the creation of a long-distance discharge. Experiments on the fundamental discharge and ignition of methane/air mixtures were conducted. The optimum incident time of the laser prior to the application of a high voltage was found to reduce the sparkover voltage and markedly reduce the voltage required by LBALDI under pressurized air conditions. In the ignition experiment, LBALDI showed the fastest heat release rate at the lean flammable limit.
Technical Paper

Influences of Compression Ratio and Methane Additive on Combustion Characteristics in a DME-HCCI Engine

2005-10-24
2005-01-3745
In this study, a spectroscopic method was used to measure the combustion characteristics of a test diesel engine when operated on dimethyl ether (DME) under a homogenous charge compression ignition (HCCI) combustion process. A numerical analysis was made of the elementary reactions using Chemkin 4.0 to perform the calculations. The results of the analysis showed that compression ratio changes and the methane additive influenced the autoignition timing in the DME-HCCI combustion process. In the experiments, reducing the compression ratio delayed the time of the peak cylinder pressure until after top dead center, thereby increasing the crankshaft output and thermal efficiency. The addition of methane enabled the DME-HCCI engine to provide crankshaft output equivalent to that seen for diesel engine operation at a low equivalence ratio. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Influence of Initial Turbulence in RCM on Spontaneous Ignition of End Gas under SI Combustion

2015-09-01
2015-01-1876
The influence of the eddy scale of initial turbulence in RCM on the pressure rise rate after spontaneous ignition of end gas was investigated. The combustion time of the end gas after spontaneous ignition was observed by using high-speed direct photography. As a result, the large scale eddy reduced the pressure rise rate after spontaneous ignition. The temperature inhomogeneity of end gas was higher with the large scale eddy. The combustion time of end gas after spontaneous ignition was prolonged by variation in local ignition delay due to inhomogeneity. The large scale eddy may prevented the knocking occurrence.
Technical Paper

Influence of Calcium-Based Additives with Different Properties on Abnormal Combustion in an SI Engine

2016-11-08
2016-32-0007
Technologies for further improving vehicle fuel economy have attracted widespread attention in recent years. However, one problem with some approaches is the occurrence of abnormal combustion such as low-speed pre-ignition (LSPI) that occurs under low-speed, high-load operating conditions. One proposed cause of LSPI is that oil droplets diluted by the fuel enter the combustion chamber and become a source of ignition. Another proposed cause is that deposits peel off and become a source of ignition. A four-stroke air-cooled single-cylinder engine was used in this study to investigate the influence of Ca-based additives having different properties on abnormal combustion by means of in-cylinder visualization and absorption spectroscopic measurements. The results obtained for neutral and basic Ca-based additives revealed that the former had an effect on advancing the time of autoignition.
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Combustion Characteristic of Lean Mixture Ignited by Gas-Oil Injection in High Compression Engine

1997-10-27
978496
We have investigated combustion characteristics of lean gasoline-air pre-mixture ignited by gas-oil injection using a high compression D.I. diesel engine. Gasoline was supplied as an uniform lean mixture by using carburetors, and gas-oil was directly injected into the cylinder. Two different types of combustion chamber were attempted. It was confirmed that the lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An engine with the re-entrant type combustion chamber had an advantage for combustion and ignition. The brake mean effective pressure increased when relatively rich mixture was provided with a small amount of the gas-oil injection. As the gas-oil injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum gas-oil injection.
X