Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

Influence of Internal EGR on Knocking in an HCCI Engine

2015-11-17
2015-32-0807
Homogeneous Charge Compression Ignition (HCCI) engines have attracted much attention and are being widely researched as engines characterized by low emissions and high efficiency. However, one issue of HCCI engines is their limited operating range because of the occurrence of rapid combustion at high loads and misfiring at low loads. It is known that knocking accompanied by in-cylinder pressure oscillations also occurs in HCCI engines at high loads, similar to knocking seen in spark-ignition engines. In this study, HCCI combustion accompanied by in-cylinder pressure oscillations was visualized by taking high-speed photographs of the entire bore area. In addition, the influence of internal exhaust gas circulation (EGR) on HCCI knocking was also investigated. The visualized combustion images revealed that rapid autoignition occurred in the end-gas region during the latter half of the HCCI combustion process when accompanied by in-cylinder pressure oscillations.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Technical Paper

A Study of Supercharged HCCI Combustion Using Blended Fuels of Propane and DME

2014-11-11
2014-32-0005
Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion.
Technical Paper

A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area

2014-11-11
2014-32-0001
This study investigated the effect of streamer discharge on autoignition and combustion in a Homogeneous Charge Compression Ignition (HCCI) engine. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke optically accessible engine that allowed visualization of the entire bore area. The experimental results showed that the flame was initiated and grew from the vicinity of the electrode under the application of a streamer discharge. Subsequently, rapid autoignition (HCCI combustion) occurred in the unburned mixture in the end zone, thus indicating that HCCI combustion was accomplished assisted by the streamer discharge. In other word, ignition timing of HCCI combustion was advanced after the streamer discharging process, and the initiation behavior of the combustion flame was made clear under that condition.
Technical Paper

A Spectroscopic Study of the Effects of Multicomponent Fuel Blends on Supercharged HCCI Combustion

2012-10-23
2012-32-0080
The growing severity of global environmental issues in recent years, including air pollution and the depletion of fossil fuels, has made it necessary for internal combustion engines to achieve higher efficiency and lower exhaust emission levels. Calls for reducing atmospheric emissions of carbon dioxide (CO₂) necessitate thoroughgoing measures to lower the levels of CO₂ originating in the combustion process of internal combustion engines and to facilitate operation on diverse energy sources. Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. These characteristics are obtainable because HCCI combustion can take place at ultra-lean conditions exceeding the limits of flame propagation.
X