Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Journal Article

Abnormal Combustion Induced by Combustion Chamber Deposits Derived from Engine Oil Additives in a Spark-Ignited Engine

Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier.
Journal Article

A Study on the Effect of a Calcium-Based Engine Oil Additive on Abnormal SI Engine Combustion

Supercharged direct-injection engines are known to have a tendency toward abnormal combustion such as spontaneous low-speed pre-ignition and strong knock because they operate under low-speed, high-load conditions conducive to the occurrence of irregular combustion. It has been hypothesized that one cause of such abnormal combustion is the intrusion of engine oil droplets into the combustion chamber where they become a source of ignition. It has also been reported that varying the composition of engine oil additives can change susceptibility to abnormal combustion. However, the mechanisms involved are not well understood, and it is not clear how the individual components of engine oil additives affect autoignition. In this study, abnormal combustion experiments were conducted to investigate the effect on autoignition of a calcium-based additive that is typically mixed into engine oil to act as a detergent.
Journal Article

A Study on the Effect of Zn- and Mo-Based Engine Oil Additives on Abnormal SI Engine Combustion using In-Cylinder Combustion Visualization

Spontaneous low-speed pre-ignition, strong knock and other abnormal combustion events that occur in supercharged direct-injection engines are viewed as serious issues. The effects of the engine oil and the components of engine oil additives have been pointed out as one cause of such abnormal combustion. However, the mechanisms involved have yet to be elucidated, and it is unclear how the individual components of engine oil additives influence autoignition. This study investigated the effect on autoignition of boundary lubricant additives that are mixed into the engine oil for the purpose of forming a lubricant film on metal surfaces. A high-speed camera was used to photograph and visualize combustion through an optical access window provided in the combustion chamber of the four-stroke naturally aspirated side-valve test engine. Spectroscopic measurements were also made simultaneously to investigate the characteristics of abnormal combustion in detail.