Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

The Oil Flow Measuring Method in Engine Lubrication

We have developed a method by which the oil flow rate can be measured by using a hot-wire sensor that could be installed in the passages of actual engine lubricant oil. This measuring method proves to have a ±5% accuracy and a 40kHz response that enables ‘real time’ function. Thus, observation of (1) the effect of bearing clearance, and (2) the fluctuating mechanism of the oil flow per 1 degree crank angle from the point of engine start-up to 6000r/min and full load can be achieved, and the timing and quantity of intermittent oil-jet from the oil hole in connecting rod were ascertained.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Technical Paper

Strain and Motion Measurement for Piston, Piston Ring and Connecting Rod of High Speed Running Engines using New Digital Telemeter

The authors have developed a measurement technique equipped with new digital telemeter for strain, motion and temperature of engine parts under high speed running operation with high accuracy. This telemeter has an original signal processing method in which the sensor outputs are directly converted to digital signals without conventional amplifiers and A/D converters. This telemeter enables multipoint measurements at high engine speed in small gasoline engines because of its compactness and lightweight. And this enables long hours of engine test without concern over battery life because of its low power consumption and self-contained power generation. We applied new developed digital telemeter to several measurements and analysis on the piston, piston ring and connecting rod.
Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
Technical Paper

Quantitative Analysis of Fuel Behavior in Port-Injection Gasoline Engines

We have studied the fuel behavior in Port-injection gasoline engines as the following: 1. We have developed a 100%-sampling quantitative analysis method where fuel is sealed up in the intake port and cylinder at a specific point during firing operation, using an engine with intake and exhaust valves that are opened and closed by electronic control. 2. As a result of our analysis of steady and transient state characteristics of fuel behavior using this method, it was verified that the amount of wall-wetting fuel in the port and cylinder is apparently different before and after the warm-up process. As for transient fuel behavior, a delay in fuel transfer has been acknowledged in the amount of wall-wetting fuel not only in the port but also in the cylinder. Different from the existing indirect analysis, this method enables direct measurement of fuel behavior even during the actual firing operation.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Development of Variable Valve Timing System Controlled by Electric Motor

To meet the requirements for lower fuel consumption and emissions as well as higher performances, a “Variable Valve Timing - intelligent by Electric motor (VVT-iE)” system has been newly developed. The system has been firstly adopted to the intake valve train of the Toyota's new 4.6 and 5.0 litter V8 SI engine series. The VVT-iE is composed of a cam phasing mechanism connected to the intake camshaft and brushless motor integrated with its intelligent driver. The motor-actuated system is completely free from operating limitation caused from hydraulic conditions. This enjoys an advantage for reducing cold HC. The system also presents further reduction in fuel consumption.
Technical Paper

Development of Combustion Behavior Analysis Techniques in the Ultra High Engine Speed Range

In order to clarify the combustion behavior in the ultra high engine speed range, a new technique has been developed. This technique is composed of ionization current detection and flame observation, and is highly heat-resistant, vibration-resistant, and has a quick response. From analyzing the flame front propagation in the high-speed research engine, it was found that the flame propagated throughout the entire cylinder over almost the same crank angle period irrespective of engine speed introduction.
Technical Paper

Design of a High Ignitability Spark Plug with a Flow Guide Plate

In a high gas velocity condition in cylinder, the ground electrode orientation of the spark plug causes the ignitability to fluctuate due to the change in gas flow around the spark gap. As one method to solve this issue we have focused on controlling the gas flow by plate like airfoils or turbine blades. We have developed gas flow control technology for the spark plug to achieve high ignitability under the worst case condition of ground electrode orientation. The adoption of current ground electrode welding technology has allowed us to locate a flow guide plate on the plug housing.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

Analyzing the Influence of Gasoline Characteristics on Transient Engine Performance

It has been reported that the middle range of gasoline distillation temperatures strongly affects vehicle driveability and exhaust hydrocarbon (HC) emissions, and that MTBE(CH3-O-C4H9)- blended gasoline causes poor driveability during warm-up. The present paper is concerned with the results of subsequent detailed research on gasoline characteristics, exhaust emissions and driveability. In this paper, first it is demonstrated by using four models of passenger cars having different types of exhaust gas treatment system that decreased 50% distillation temperature (T50) reduces exhaust HC emission. This result indicates lowering T50 in the market will contribute to improving air quality. Secondly gasoline behavior in the intake manifold is investigated by using an engine on the dynamometer in order to clarify the mechanisms of HC emission increase and poor engine response which are caused by high T50.
Technical Paper

Analysis of Oil Consumption by Observing Oil Behavior Around Piston Ring Using a Glass Cylinder Engine

The reduction of engine oil consumption rate is one of the important concerns for automotive engineers. However, it has been difficult to solve this subject, since the oil consumption mechanism has not yet been elucidated. In this study, to clarify the oil loss mechanism via the piston rings, a transparent glass cylinder engine was used to observe oil behavior between cylinder wall and piston surface. For photographic observation, a high speed camera, a still camera. and a TV camera were used. Since the new photographic system by using TV camera with a synchro - flash and a synchro-memory was applied, it was also possible to observe the oil behavior in detail. Moreover, a new visual method by which colored oil was injected from the various points on the piston surface and traced was developed for easy analysis of oil movement around the piston ring.
Technical Paper

Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors

In internal combustion engine, it is well-known that oil infiltrates the combustion chamber through the clearance between the piston ring and the cylinder bore with vertical reciprocating motion of the piston, leading to an increase in oil consumption. The deformation of the cylinder bore is inevitable to some extent in the actual engine because of the tightening of cylinder head bolt and heat load._As to the function of the piston ring, it is desirable that it conforms to such bore deformation. The author et al. made a glass cylinder engine in which closed piston ring gap could be visualized, based on the idea that piston ring conformability to the sliding surface of bore could be evaluated from minute changes of the piston ring gap. This newly-devised visualized engine was an in-line 4-cylinder engine, capable of running up to 6,000 rpm, in which the closed gap of piston ring could be observed minutely during engine operation.
Technical Paper

Analysis of Mixture Formation of Direct Injection Gasoline Engine

Direct injection gasoline engines require extremely advanced control of air-fuel mixture in order to achieve good stratified combustion. The method of examining quality of mixture formation in combustion chambers is essential for the achievement. In this research, air-fuel mixture in combustion chamber of the TOYOTA D-4 engine was analyzed in space and time by visualization as well as Air/Fuel ratio measurement by multi-point and high response techniques. Thus the effects that injection timing, swirl and fuel pressure exerted to mixture formation were elucidated.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

3D Spray Measurement System for High Density Fields Using Laser Holography

To develop injection nozzles and to improve the numerical simulation technology of fuel spray, a measuring technology to analyze the process of disintegration into droplets accurately is required. Performances required by a spray droplets measuring device are: “ability to measure in the combustion condition inside the engine cylinder”, “ability to measure the diameter of spray droplets in high-density fields”, “ability to measure the structure of spray droplets in 3D”, and an improved measuring accuracy of non-spherical droplets. These elements are required in order to analyze the spray droplets structure of gasoline direct injection engines. As a promising method to satisfy these requirements, the laser holography method has been already suggested. However, it has some drawbacks, such as a difficulty in measuring spray droplets in high-density fields and over a long analysis period.