Refine Your Search

Author

Search Results

Technical Paper

Understanding of LME Cracking Phenomenon in Spot Welding and Crack Prediction Using FE Analysis

2022-03-29
2022-01-0328
The application of high-strength steel sheets to car bodies is expanding to improve the crashworthiness and achieve weight reduction [1, 2]. Conversely, in recent years, the occurrence of liquid metal embrittlement (LME) cracks has been discussed in resistance spot welding using a Zn-based coated high-strength steel [3-5]. This study examined the factors causing LME cracks and identified the locations of LME cracks found in resistance spot welds using a Zn-coated high-strength steel sheet. Furthermore, through an analytical approach using a scanning electron microscopy (SEM) and transmission electron microscopy (TEM), for a joint with an LME crack, it was found that (1) grain boundary fracture occurred at LME crack portion and its fracture surface was covered with Zn, (2) Zn penetrated into prior-austenite grain boundaries near the LME crack, and (3) Zn concentration decreased toward the tip of the Zn-penetrated site.
Technical Paper

Titanium Alloy Bar Suitable for Highly Efficient Wear-Resistance Treatment

1995-02-01
950940
To give the wear-resistance to titanium intake valves by simple oxidation treatment, oxidation condition and microstructure of Ti-6Al-4V bars were studied. The wear test using a valve simulator shows that the wear of the face oxidized at 820°C for 1 and 4h in air is superior to that of ferrous valves. The best micro-structure of Ti-6Al-4V bar is an acicular structure with the prior β grain size of 30 to 60 μ m in average, which prevents distortion during the oxidation treatment and has excellent mechanical properties.
Technical Paper

The Development of Vibration Damping Steel Sheets for Inner Panels of Automotive Vehicles

1991-05-01
911083
Vibration damping steel sheets (VDSS), which have sandwich structures with intermediate layers of resin, have been studied. The most important characteristics of VDSS for inner panels of automotive vehicles are the vibration damping properties, press formability and spot weldability. Vibration damping properties, which are quantified by loss factor,η, were influenced by both tanδ, which indicates damping capacity of resins, and elastic modulus of core resin. From a view point of vibration damping properties, resins with larger tanδ and relatively lower elastic modulus were favorable. Because these mechanical characteristics vary considerably with temperature, it is important to select the most suitable resin for the service temperature range. The relationship between noise reduction effect and loss factor of VDSS were also studied. It was experimentally confirmed that noise reduction effect of VDSS is proportional to the logarithm of their loss factor.
Technical Paper

Residual Stress in the Induction Hardened Surface of Steel, 1969

1969-02-01
690472
The residual stresses produced by static and progressive induction hardening processes were investigated using different diameter bars and different heating conditions. The x-ray diffraction method of stress measurement was used. Compressive stresses were observed at and slightly below the surface in the hardened zone, while lower compressive stresses or tensile stresses were seen at the ends of this zone. These stresses depended on the shapes and sizes of the heated zone and the cooling patterns. Shot peening was seen to convert the tensile stress to a compressive value.
Technical Paper

Recent Developments in Press Formability of Aluminum Alloy Sheets for Automotive Panels

1993-03-01
930705
Aluminum alloy sheets are used for automotive body-panels, but their small Young's modulus results in inferior shape-fixability than conventionally-applied steel sheets with similar strengths. Smaller radius of curvature, indicating better shape-fixability, is found at the center of a panel press-formed with higher blank holder force (BHF). Higher force can be applied for press-forming of alloy sheets with larger strain-hardening exponent (n value) induced by an increased addition of Mg. Recently-developed 5000 series alloy sheets containing 5.5 pct Mg and 0.3 pct Cu have an elongation over 33 pct at an ultimate tensile strength of 270 MPa and can be press-formed with better shape-fixability.
Technical Paper

Prediction of Strength of Spot-Welded Joints by Measurements of Local Mechanical Properties

2003-10-27
2003-01-2830
Tensile testing technique for the small sample was newly developed. Small tensile specimens with gage length of 1mm were taken from spot welds of high tensile strength steel sheets, and stress-strain relationships and ductility of base metal, heat affected zone including corona bond and nugget were individually measured. Finite element analyses of spot-welded joints under the conditions of static and dynamic tensile-shear loading were carried out with these local mechanical properties to predict the fracture mode and strength of the joints. It was clarified that the effects of both nugget diameter and class of steels were evaluated with good accuracy.
Technical Paper

Newly Developed Hot Rolled High Strength Steel Sheets and Their Formability

1993-03-01
930030
A wider usage of hot rolled high strength steels (HRHSSs) are intensively studied for more complicated underbody structural parts of cars now. With an emphasis placed on the improvement of sheared-edge flangeability, we have developed new types of HRHSSs ranging from 440N/mm2 to 690N/mm2 in ultimate tensile strength (UTS). The microstructure and chemistry of these steels were controlled: The hard second phase in the polygonal ferrite matrix was controlled both by adjusting the chemical composition, mainly, silicon-content, and by applying thermomechanical treatment to a hot strip mill. Compared to conventional high strength steels such as a high-carbon, low-silicon steel and a niobium-bearing steel, various formability-performances of the developed steels were found to be good.
Technical Paper

New Type of Hardenable Hot-Rolled High-Strength Steels

1992-02-01
920250
Two types of TS 450 to 600 MPa grade hot rolled high strength steels have been developed whose strength increases by a post-deformation heat treatment. One is a nitrogen added steel, produced by a low temperature coiling method. This steel shows an increase in tensile strength by about 60 to 90 MPa after a conventional baking treatment. The other is a Cu-bearing steel, produced also by a low temperature coiling method. This steel shows much larger increase in tensile strength by about 200 MPa due to the precipitation hardening of copper, but it requires an additional heat treatment at a relatively high temperature such as 600° C.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

Nd:YAG Laser Welding of Zinc-coated Steel Sheet

1998-09-29
982361
This paper describes the lap welding of Zinc-coated steel sheet using a high power continuous wave YAG laser. The well-known problem of welding the Zinc-coated sheet is related to the low boiling point of zinc compared with the melting point of steel. During lap welding, zinc coating at the interface vaporize rapidly and causes defects1)2). In this study, therefore, lap welding was performed by YAG laser. The effects of type of coating layer, welding conditions, tensile strength and corrosion resistance after electro-deposition was examined. It was found that the weldability of coated steel is different by type of coating. Zn-Ni coated steel showed good weldability, but galvanealed steel inevitably pore pits with no gap set up. These defects not only lower the strength of joint, but also produce irregular bead where easily corroded after electro-deposition.
Technical Paper

Metal Flow of a Tailored Blank in Square Cup Deep Drawing

1998-02-23
980447
The application of tailored blanks to autobody parts has progressed because of its numerous advantages. The forming of tailored blanks has, however, a lot of technical problems. Among the problems, weld-line movement and formability deterioration are the most significant ones in case of deep drawing. The weld-line movement and formability change were examined experimentally as a function of weld-line location in square cup deep drawing. The weld-line movement of tailored blank consists of two sources. One is the geometrical reason, and the other is due to the hardening of weld bead. The formability of tailored blank is inferior to that of an original blank by the existence of hardened weld region. The mode of fracture changes from wall breakage to a fracture adjacent to punch radius when the weld-line was close to the punch corner.
Technical Paper

Integration of process operation in the fatigue calculation of sheets structural parts

2003-10-27
2003-01-2879
The main operations for the manufacturing of auto parts are the cutting of the flange and the stamping. In order to perform accurate fatigue calculation it is necessary to have the material properties for each point of the structure. Usually, only the fatigue curve obtained on the flat sheet with polished edges is used because it represents the basic metal behaviour. The real edge quality decreases the fatigue limit while the hardening induced by the stamping increases it. To take these effects into account allows a better fatigue calculation of the structural part.
Technical Paper

High Temperature Carburizing Steel Bars for Saving Energy Consumption in the Automobile Industry

1982-02-01
820127
Carburizing heat treatment is one of the automobile component manufacturing steps, which consumes a large amount of energy. Raising the carburizing temperature can shorten the carburizing time and save the energy, but involves the risks of grain coarsening and attendant property deterioration. The authors have clarified the precipitation behavior of aluminum nitride (A1N) in the automobile gear manufacturing process and the optimum precipitation of A1N in as-rolled steel bars to prevent the grain coarsening. Through the application of the controlled rolling technique to ensure the optimum precipitation of A1N in continuously cast steel of uniform chemical composition, the authors have substantially saved energy while maintaining high quality, and developed a high-temperature carburizing steel expected to minimize and stabilize quenching strains.
Technical Paper

Fatigue life prediction for welded steel sheet structures

2003-10-27
2003-01-2878
In this paper the fatigue life of welded steel sheet structures is predicted by using FE-Fatigue, which is one of fatigue analysis software tools on the market, and these predicted results are evaluated by reference to corresponding experimental results. Also, we try to predict these structures by using two fatigue life prediction theories established by the JSAE fatigue and reliability committee to compare prediction results. It was confirmed that spot welds fatigue life predictions agree qualitatively with corresponding experimental results and arc welds fatigue life predictions are in good agreement with corresponding experimental results in cases where the SN curve database is modified appropriately.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

Development of a New 450 N/mm2 Grade Ultra-Low Carbon Sheet Steel for Automotive Panels

1992-02-01
920248
For the automotive exposed panels, several types of 350N/mm2 grade bake-hardenable sheet steel have been developed and actually applied. However for further weight reduction of automotive body panels, especially inner panels, a 450N/mm2 grade sheet steel with excellent formability has been required. For this demand a new 450N/mm2 grade sheet steel has been developed. As the result it was found, that by the co-addition of Mn and P to ultra-low carbon interstitial free steel the recrystallization texture favorable for deep drawability can be formed, accompanied with the increase in tensile strength, when hot band coiled temperature is lower than 773K. In order to improve the property of the 450N/mm2 grade steel, the effect of Si content has been studied. It was found that the deep drawability is not deteriorated by the addition of Si into the Mn and P co-added ultra-low carbon IF-steel.
Technical Paper

Corrosion Resistance of Gas Shielded Metal Arc Welds with E-coat

1997-02-24
971008
Gas shielded metal arc welding is generally applied to automobile chassis parts. However, the weld parts with the E-coat show poor corrosion resistance. Therefore, the corrosion mechanism of the weld parts was investigated. The results found two reasons why the weld parts corroded faster than the non weld parts:(1)inadequate phosphating (2)defects in the E-coat. After detailed investigation, it was clarified that the major cause of poor corrosion resistance was the defects in the E-coat caused by slags formed on the surface of the weld bead. Therefore the amount of slag has to be decreased to improve the corrosion resistance. The effect of shielding gas composition on the amount of slag was then investigated. In the case of Ar and oxidizing gas mixture, the corrosion resistance improved as the oxidizing gas content decreased. This was due to the reduction of slags.
Technical Paper

Comparison between Experiments and FEM Simulation of High Velocity Tensile Test Methods to Clarify Test Method's Influence of High Strength Steel

2000-10-03
2000-01-2725
In order to examine the compatibility of improvement of crashworthiness with weight-saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. The material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behaviour of materials at an actual crash speed range (∼55km/h). As for the accuracy of this system, comparison between experiments and FEM simulation both of this test machine and other high-velocity-tensile-test machines have clarified the feature of one bar method and the metallurgical features of high velocity deformation. It was confirmed that the stress-strain curve measured by the one bar method agreed with that measured by the modified Split Hopkinson pressure bar method.
Technical Paper

Bake-Hardenable Al-Killed Steel (RBH-35) for Automobile Body Panels

1982-02-01
820018
In order to attain the gauge reduction of outer body panels without spoiling the dent-resistance and formability, a bake-hardenable Al-killed steel sheet, named RBH-35, and has been developed in the conventional box-annealing process. RBH-35 is an 0.01% carbon, low manganese and rephosphorized Al-killed steel sheet retaining solute carbon of about 10 ppm. The steel exhibits high r-value, bake-hardenability of 40 MPa, ultimate tensile strength of above 350 MPa and substantially non-aging property. Results of stamping test of door outer panel showed that RBH-35 is the most suitable steel sheet for the thinning of outer body panels by about 10%. This paper reports the metallurgical features, mechanical properties and applications of the steel.
Technical Paper

Application of Vibration Damping Steel Sheet for Autobody Structural Parts

1992-02-01
920249
As a demand for vehicles of higher functionality grows, automakers and material suppliers are devoting increasing efforts to develop technologies for greater safety, lighter weight, higher corrosion resistance, and enhanced quietness. The resin-sandwiched vibration damping steel sheet (VDSS), developed as a highly functional material for reducing vehicle vibration and noise, has been used for oil pans1) and compartment partitions2). First applied for a structural dash panel of the new Mazda 929, a Zn-Ni electroplated VDSS which allows direct electric welding has contributed to greater weight reduction as well as improved quietness.
X