Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Review of Diesel Exhaust Aftertreatment Programs

1999-04-27
1999-01-2245
The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U. S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R&D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives.
Technical Paper

Overview of Diesel Emission Control-Sulfur Effects Program

2000-06-19
2000-01-1879
This paper describes the results of Phase 1 of the Diesel Emission Control - Sulfur Effects (DECSE) Program. The objective of the program is to determine the impact of fuel sulfur levels on emissions control systems that could be used to lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from vehicles with diesel engines. The DECSE program has now issued four interim reports for its first phase, with conclusions about the effect of diesel sulfur level on PM and total hydrocarbon (THC) emissions from the high-temperature lean-NOx catalyst, the increase of engine-out sulfate emissions with higher sulfur fuel levels, the effect of sulfur content on NOx adsorber conversion efficiencies, and the effect of fuel sulfur content on diesel oxidation catalysts, causing increased PM emissions above engine-out emissions under certain operating conditions.
Technical Paper

Identification of Potential Efficiency Opportunities in Internal Combustion Engines Using a Detailed Thermodynamic Analysis of Engine Simulation Results

2008-04-14
2008-01-0293
Current political and environmental concerns are driving renewed efforts to develop techniques for improving the efficiency of internal combustion engines. A detailed thermodynamic analysis of an engine and its components from a 1st and 2nd Law perspective is necessary to characterize system losses and to identify efficiency opportunities. We have developed a method for performing this analysis using simulation results from commercially available engine-modeling software packages such as WAVE® from Ricardo, Inc., and GT-Power™ from Gamma Technologies, Inc. Results from the simulation are post-processed to compute thermodynamic properties such as internal energy, enthalpy, entropy, and availability (or exergy) which are required to perform energy and availability balances for the system. This analysis is performed for all major engine components (turbocharger, intercooler, EGR cooler, etc.) and for the engine as a whole as a function of crank angle over an entire engine cycle.
Technical Paper

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

2007-10-29
2007-01-3994
Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on gasoline and a 20% increase to 180 hp (134 kW) on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles.
X