Refine Your Search


Search Results

Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Journal Article

Removal of EGR Cooler Deposit Material by Flow-Induced Shear

A number of studies have identified a tendency for exhaust gas recirculation (EGR) coolers to foul to a steady-state level and subsequently not degrade further. One possible explanation for this behavior is that the shear force imposed by the gas velocity increases as the deposit thickens. If the shear force reaches a critical level, it achieves a removal of the deposit material that can balance the rate of deposition of new material, creating a stabilized condition. This study reports efforts to observe removal of deposit material in-situ during fouling studies as well as an ex-situ removal through the use of controlled air flows. The critical gas velocity and shear stress necessary to cause removal of deposit material is identified and reported. In-situ observations failed to show convincing evidence of a removal of deposit material. The results show that removal of deposit material requires a relatively high velocity of 40 m/s or higher to cause removal.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel.
Journal Article

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel.
Technical Paper

Microstructural Analysis of Deposits on Heavy-Duty EGR Coolers

Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards and has negative impacts on cooler sizing and engine performance. In order to improve our knowledge of cooler fouling as a function of engine operating parameters and to predict and enhance performance, 19 tube-in-shell EGR coolers were fouled using a 5-factor, 3-level design of experiments with the following variables: (1) EGR flow rate, (2) EGR inlet gas temperature, (3) coolant temperature, (4) soot level, and (5) hydrocarbon concentration. A 9-liter engine and ULSD fuel were used to form the cooler deposits. Coolers were run until the effectiveness stabilized, and then were cooled down to room temperature and run for an additional few hours in order to measure the change in effectiveness due to shut down. The coolers were cut open and the mass per unit area of the deposit was measured as a function of distance down the tube.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Journal Article

High Load Expansion of Catalytic EGR-Loop Reforming under Stoichiometric Conditions for Increased Efficiency in Spark Ignition Engines

The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. In a previous investigation, the researchers showed that, by controlling the boundary conditions of the reforming catalyst, it was possible to minimize the thermodynamic expense of the reforming process, and in some cases, realize thermochemical recuperation (TCR), a form of waste heat recovery where exhaust heat is converted to usable chemical energy. The previous work, however, focused on a relatively light-load engine operating condition of 2000 rpm, 4 bar brake mean effective pressure (BMEP). The present investigation demonstrates that this operating strategy is applicable to higher engine loads, including boosted operation up to 10 bar BMEP.
Technical Paper

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation.
Journal Article

Engine Operating Conditions and Fuel Properties on Pre-Spark Heat Release and SPI Promotion in SI Engines

This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitude are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude.
Technical Paper

Emission Performance of Selected Biodiesel Fuels

Because of the great interest in biodiesel fuels around the world, the International Energy Agency's Committee on Advanced Motor Fuels sponsored this project to determine emissions and performance of a number of biodiesel fuels with a special emphasis on unregulated emissions. Oak Ridge National Laboratory (ORNL) and Technical Research Centre in Finland (VTT) carried out the project with complementary work plans. Several different engines were used between the two sites, and in some cases emissions control catalysts were used, both at ORNL and at VTT. ORNL concentrated on light and medium duty engines, while VTT emphasized a heavy-duty engine and also used a light duty car as a test bed. Common fuels between the two sites for these tests were rape methyl ester in 30% blend and neat, soy methyl ester in 30% blend and neat, used vegetable oil methyl ester (UVOME) in 30% blend, and the Swedish environmental class 1 reformulated diesel (RFD).
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
Technical Paper

Characterization of In-Cylinder Techniques for Thermal Management of Diesel Aftertreatment

One challenge in meeting emission regulations with catalytic aftertreatment systems is maintaining the proper catalyst temperatures that enable the catalytic devices to perform the emissions reduction. In this study, in-cylinder techniques are used to actively control the temperature of a catalyzed diesel particulate filter (DPF) in order to raise the DPF temperature to induce particulate oxidation. The performance of four strategies is compared for two different starting DPF temperatures (150°C and 300°C) on a 4-cylinder 1.7-liter diesel engine. The four strategies include: (1) addition of extra fuel injection early in the combustion cycle for all four cylinders, (2) addition of extra fuel injection late in the combustion cycle for all four cylinders, (3) operating one-cylinder with extra fuel injection early in the combustion cycle, and (4) operating one-cylinder with extra fuel injection late in the combustion cycle.
Journal Article

Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
Journal Article

Characterization of Field-Aged EGR Cooler Deposits

Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with nitrogen oxides (NOx) emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured.
Journal Article

Carbonyl Formation during High Efficiency Clean Combustion of FACE Fuels

The low temperature conditions that occur during high efficiency clean combustion (HECC) often lead to the formation of partially oxidized HC species such as aldehydes, ketones and carboxylic acids. Using the diesel fuels specified by the Fuels for Advanced Combustion Engines (FACE) working group, carbonyl species were collected from the exhaust of a light duty diesel engine operating under HECC conditions. High pressure liquid chromatography - mass spectrometry (LC-MS) was used to speciate carbonyls as large as C 9 . A relationship between carbonyl species formed in the exhaust and fuel composition and properties was determined. Data were collected at the optimum fuel efficiency point for a typical road load condition. Results of the carbonyl analysis showed changes in formaldehyde and acetaldehyde formation, formation of higher molecular weight carbonyls and the formation of aromatic carbonyls.
Technical Paper

Assessing Reductant Chemistry During In-Cylinder Regeneration of Diesel Lean NOx Traps

Lean NOx Trap (LNT) catalysts are capable of reducing NOx in lean exhaust from diesel engines. NOx is stored on the catalyst during lean operation; then, under rich exhaust conditions, the NOx is released from and reduced by the catalyst. The process of NOx release and reduction is called regeneration. One method of obtaining the rich conditions for regeneration is to inject additional fuel into the engine cylinders while throttling the engine intake air flow to effectively run the engine at rich air:fuel ratios; this method is called “in-cylinder” regeneration. In-cylinder regeneration of LNT catalysts has been demonstrated and is a candidate emission control technique for commercialization of light-duty diesel vehicles to meet future emission regulations. In the study presented here, a 1.7-liter diesel engine with a LNT catalyst system was used to evaluate in-cylinder regeneration techniques.