Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Technical Paper

Ultrasonic Spot Welding of Galvanized Mild Steel to Magnesium AZ31B

2012-04-16
2012-01-0474
Ultrasonic spot welding (USW) is a promising joining method for magnesium to steel to overcome the difficulties of fusion welding for these two materials with significant differences in melting temperatures. In a previous paper, the results of ultrasonic spot welding of magnesium to steel, with sonotrode engaged Mg piece, was presented. In this study, same material combination (0.8-mm-thick galvanized mild steel and 1.6-mm Mg AZ31B-H24) was used, but with sonotrode engaging steel piece. Various welding time, from 0.4 to 2.0 sec, were applied. Tensile lap-shear test, optical metallography, and scanning electron micrography were conducted for joint strength measurement and microstructural evaluation. The joint strength reached over 4.2 kN at 1.8 sec welding time. Mg-Zn eutectic was formed at the interface, indicating the interfacial temperature over 344°C. The study demonstrated USW to be a viable process for potential manufacturing of mixed-metal joints.
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

2010-04-12
2010-01-0975
Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

2005-04-11
2005-01-0186
Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

2015-09-01
2015-01-1992
Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
Technical Paper

Thermo-Mechanical Fatigue Testing of Welded Tubes for Exhaust Applications

2018-04-03
2018-01-0090
Selected ferritic stainless steel sheets for exhaust applications were tested under thermo-mechanical fatigue (TMF) condition in the temperature range of 400-800 °C with partial constraint. Straight welded tubes were used as the testing coupons to withstand large compression without buckling, and to understand the effect of welding as well. Repeated tests confirmed the observed failure scenario for each material type. The hysteresis loop behaviors were also simulated using the mechanism-based integrated creep and fatigue theory (ICFT) model. Although more development work is needed, for quick material screening purpose this type of testing could be a very cost effective solution for materials and tube weld development for exhaust applications.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

2007-04-16
2007-01-0224
On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

2009-04-20
2009-01-0628
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

The Prediction of Fatigue Sensitivity to Void Content for 3D Reinforced Composites

2006-04-03
2006-01-1336
Three dimensional fabrics have seen increasing use lately as composite reinforcements. Advantages over prepreg or chopped fiber processes can include cost, handling, consistent quality, impact behavior, and resistance to delamination [1]. To gain acceptance in the transportation industry it is imperative that properties including dynamic and fatigue behavior be designable. A Progressive Failure Analysis (PFA) was developed jointly by Alpha Star Corp and NASA to predict fatigue life of composites and determine their damage mechanisms so that the life could be extended. The title of this software package is GENOA™, and it was used to focus on the three dimensional fabric called 3WEAVE™ made by 3TEX, Inc. It was discovered through fatigue testing that void content greatly affected fatigue life for the 3D E-glass fabric reinforcing a polyurethane modified vinyl ester resin called Dion 9800 from Reichhold. This is a common characteristic for most structural materials.
Journal Article

The Impact of Low Octane Hydrocarbon Blending Streams on the Knock Limit of “E85”

2013-04-08
2013-01-0888
Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called “E85,” underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane “E85” fuel.
Technical Paper

The Fate of Chlorine and Heavy Metals During Pyrolysis of Automobile Shredder Residue*

1999-03-01
1999-01-0671
One of the major sources of chlorine in automobiles is polyvinyl chloride (PVC). When old discarded automobiles enter the recycling loop by far the largest percent of this material finds its way into the solid waste fraction known as automobile shredder residue (ASR). While the majority of this waste is currently disposed of in landfills new processes are currently being evaluated to recycle and recover the valuable resources contained in this solid waste. Pyrolysis, the thermal cracking of the polymeric materials present in ASR, to recover the petrochemical hydrocarbons is one such technology which is receiving attention. However, like combustion with energy recovery, the pyrolysis process is receiving close scrutiny in terms of its environmental impact. These concerns have centered around the fate of the chlorine and the heavy metals present in the ASR.
Journal Article

The Effect of Spark-Plug Heat Dispersal Range and Exhaust Valve Opening Timing on Cold-Start Emissions and Cycle-to-Cycle Variability

2021-09-21
2021-01-1180
The partnership for advancing combustion engines (PACE) is a US Department of Energy consortium involving multiple national laboratories and includes a goal of addressing key efficiency and emission barriers in light-duty engines fueled with a market-representative E10 gasoline. A major pillar of the initiative is the generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster light-off of the three-way catalyst and engine out emissions during that period.
Journal Article

Testing of Elastomer Icephobic Coatings in the AIWT: Lessons Learned

2019-06-10
2019-01-1994
A study has been conducted into icephobic properties of some highly durable “off-the-shelf” elastomer materials using a rotating ice adhesion test rig installed in the NRC’s Altitude Icing Wind Tunnel. This enabled the formation of ice at environmental conditions similar to those experienced during in-flight icing encounters. Initially, the tests indicated some very positive results with ice adhesion shear stress as low as 8KPa. On further examination, however, it became apparent that the test preparation process, in which the samples were cleaned with an ethanol alcohol solution, influenced the results due to absorption and prolonged retention of the cleaning fluid. The uptake of the ethanol alcohol solution by the elastomer was found to be a function of the surface temperature and remained absorbed into the coating during the ice accretion process changing the characteristics of the coating in such a way that led to a reduction in the ice/surface bond strength.
Technical Paper

Test Methodologies for Determining Energy Absorbing Mechanisms of Automotive Composite Material Systems

2000-04-02
2000-01-1575
Composite materials have the potential to reduce the overall cost and weight of automotive structures with the added benefit of being able to dissipate large amounts of impact energy by progressive crushing. To identify and quantify the energy absorbing mechanisms in composite materials, test methodologies were developed for conducting progressive crush tests on composite specimens that have simplified test geometries. The test method development focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. A new test fixture was designed to progressively crush composite plate specimens under quasi-static test conditions. Preliminary results are presented under a sufficient set of test conditions to validate the operation of the test fixture.
Technical Paper

Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System

2015-06-15
2015-01-2125
This paper describes the equipment, analysis methods and results obtained for particle size measurements based on a particle imaging velocimetry (PIV) system in which a short duration laser pulse is used to backlight airborne particles. This produces high quality and high resolution images of fast moving airborne particles in a non-intrusive manner. This imaging technique is also used to examine particle morphology and 2D particle trajectory and velocity. The image analysis methods are outlined and validation test results discussed which show the measurement of reference glass beads between 20 and 400 microns were generally to within their stated size. As well, validation testing using known icing wind tunnel droplet distributions were compared with Spraytek 2000 Malvern droplet size measurements and showed agreement of the MVD's to be within ±5% for distributions having nominally 20, 40 and 80 micron MVD's.
Technical Paper

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

2008-10-06
2008-01-2493
It is widely recognized that future NOx and particulate matter (PM) emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion and aftertreatment technologies will be required. In this study, advanced combustion modes operating with a diesel particulate filter (DPF) and a lean NOx trap (LNT) catalyst were evaluated on a 1.7 liter 4-cylinder diesel engine. The combustion approaches included baseline engine operation with and without exhaust gas recirculation (EGR) and one PCCI-type (premixed charge combustion ignition) combustion mode to enable high efficiency clean combustion (HECC). Five steady-state operating conditions were evaluated. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable.
Technical Paper

Steel Processing Effects on Impact Deformation of UltraLight Steel Auto Body

2001-03-05
2001-01-1056
The objective of the research presented in this paper was to assess the influence of stamping process on crash response of UltraLight Steel Auto Body (ULSAB) [1] vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of integration of forming processes and crash models.
X