Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel.
Technical Paper

Experimental Evaluation of a 4-cc Glow-Ignition Single-Cylinder Two-Stroke Engine

The performance of a 4cc two-stroke single cylinder glow plug engine was assessed at wide open throttle for speeds ranging from 2000 to 7000RPM. The engine performance was mapped for the stock aluminum head and one composed of titanium, which was printed using additive manufacturing. The engine was mounted to a motoring dynamometer and the maximum torque was determined by adjusting the fuel flow. Maximum torque occurred around 3000 to 3500RPM and tended to be higher when using the aluminum head. At slower speeds, the titanium head produced slightly higher torque. For each test condition, maximum torque occurred at leaner conditions for the titanium head compared to the stock aluminum one. Higher efficiencies were observed with the aluminum head for speeds greater than 3000RPM, but the titanium heads provided better efficiency at the lower speed points.
Technical Paper

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Journal Article

Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. The energy conversion efficiency of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain.