Refine Your Search




Search Results

Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Journal Article

Very High Cycle Fatigue of Cast Aluminum Alloys under Variable Humidity Levels

Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
Technical Paper

Ultrasonic Spot Welding of Galvanized Mild Steel to Magnesium AZ31B

Ultrasonic spot welding (USW) is a promising joining method for magnesium to steel to overcome the difficulties of fusion welding for these two materials with significant differences in melting temperatures. In a previous paper, the results of ultrasonic spot welding of magnesium to steel, with sonotrode engaged Mg piece, was presented. In this study, same material combination (0.8-mm-thick galvanized mild steel and 1.6-mm Mg AZ31B-H24) was used, but with sonotrode engaging steel piece. Various welding time, from 0.4 to 2.0 sec, were applied. Tensile lap-shear test, optical metallography, and scanning electron micrography were conducted for joint strength measurement and microstructural evaluation. The joint strength reached over 4.2 kN at 1.8 sec welding time. Mg-Zn eutectic was formed at the interface, indicating the interfacial temperature over 344°C. The study demonstrated USW to be a viable process for potential manufacturing of mixed-metal joints.
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

The Prediction of Fatigue Sensitivity to Void Content for 3D Reinforced Composites

Three dimensional fabrics have seen increasing use lately as composite reinforcements. Advantages over prepreg or chopped fiber processes can include cost, handling, consistent quality, impact behavior, and resistance to delamination [1]. To gain acceptance in the transportation industry it is imperative that properties including dynamic and fatigue behavior be designable. A Progressive Failure Analysis (PFA) was developed jointly by Alpha Star Corp and NASA to predict fatigue life of composites and determine their damage mechanisms so that the life could be extended. The title of this software package is GENOA™, and it was used to focus on the three dimensional fabric called 3WEAVE™ made by 3TEX, Inc. It was discovered through fatigue testing that void content greatly affected fatigue life for the 3D E-glass fabric reinforcing a polyurethane modified vinyl ester resin called Dion 9800 from Reichhold. This is a common characteristic for most structural materials.
Technical Paper

The Measurement of Impact Forces under Dynamic Crush using a Drop Tower Test Facility

The design of structural components requires a knowledge of their crush characteristics, particularly the load-carrying capacity during dynamic crash. Although many attempts have been made to develop analytical techniques or methods for predicting these characteristics, experimental tests are still needed to provide data for real structures for either development or validation. This report describes an experimental method for determining the force-deflection characteristics during dynamic crush of square steel columns using a drop tower test facility. The custom-designed load cells were used for the measurements of the impact and the reaction forces at both ends of specimens, which were subjected to a 30 mph impact. Instrumentation for data acquisition and detailed data reduction for analysis are also presented.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

The Impact of Low Octane Hydrocarbon Blending Streams on the Knock Limit of “E85”

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called “E85,” underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane “E85” fuel.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Technical Paper

Test Methodologies for Determining Energy Absorbing Mechanisms of Automotive Composite Material Systems

Composite materials have the potential to reduce the overall cost and weight of automotive structures with the added benefit of being able to dissipate large amounts of impact energy by progressive crushing. To identify and quantify the energy absorbing mechanisms in composite materials, test methodologies were developed for conducting progressive crush tests on composite specimens that have simplified test geometries. The test method development focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. A new test fixture was designed to progressively crush composite plate specimens under quasi-static test conditions. Preliminary results are presented under a sufficient set of test conditions to validate the operation of the test fixture.
Technical Paper

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

It is widely recognized that future NOx and particulate matter (PM) emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion and aftertreatment technologies will be required. In this study, advanced combustion modes operating with a diesel particulate filter (DPF) and a lean NOx trap (LNT) catalyst were evaluated on a 1.7 liter 4-cylinder diesel engine. The combustion approaches included baseline engine operation with and without exhaust gas recirculation (EGR) and one PCCI-type (premixed charge combustion ignition) combustion mode to enable high efficiency clean combustion (HECC). Five steady-state operating conditions were evaluated. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.