Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Variability in Hydrocarbon Speciation Measurements at Low Emission (ULEV) Levels

1995-02-01
950781
As vehicle tailpipe emission levels decrease with improvements in emission control technology and reformulation of gasolines, exhaust hydrocarbon levels begin to approach the levels in ambient air. Hydrocarbon speciation at these low levels requires high sensitivity capillary gas chromatography methods. In this study, a mixture of “synthetic” exhaust was prepared at two concentration levels (approximately 5 ppm C and 10 ppm C), and was analyzed by the widely-used Auto/Oil Air Quality Improvement Research Program (AQIRP) Phase II (gas chromatography) speciation method with a sensitivity of 0.005 ppm C for individual species. The mixture at each concentration level, along with a sample of ambient air, was analyzed a total of 20 times on 10 separate days over a 2½ week period. Concentrations of total hydrocarbons (HCs) and individual species (using the AQIRP library) were measured; averages and standard deviations were calculated.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Treatment of Natural Gas Vehicle Exhaust

1993-03-01
930223
The objective of this study is to investigate the removal of methane (CH4), nitric oxide (NO), and carbon monoxide (CO) from simulated natural gas vehicle (NGV) exhaust over a palladium catalyst. The effects of changes in space velocity and natural gas sulfur (S) content were studied. The study suggests that the NGV has to be operated slightly rich of stoichiometry to achieve simultaneous removal of the three constituents. The CH4 conversion decreases with an increase in the space velocity. The CO and NO conversions remain unaffected over the space velocity range (10,000 hr-1 to 100,000 hr-1) investigated. The presence of sulfur dioxide in the exhaust lowers the CH4 conversion and increases the CO conversion in the rich region. The NO conversion remains unaffected. Studies were conducted over model catalysts to investigate the modes of CH4 removal from the simulated NGV exhaust.
Journal Article

Transient Build-up and Effectiveness of Diesel Exhaust Gas Recirculation

2014-04-01
2014-01-1092
Modern diesel engines employ a multitude of strategies for oxides of nitrogen (NOx) emission abatement, with exhaust gas recirculation (EGR) being one of the most effective technique. The need for a precise control on the intake charge dilution (as a result of EGR) is paramount since small fluctuations in the intake charge dilution at high EGR rates may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency, especially at low to mid-engine loads. The control problem becomes more pronounced during transient engine operation; currently the trend is to momentarily close the EGR valve during tip-in or tip-out events. Therefore, there is a need to understand the transient EGR behaviour and its impact on the intake charge development especially under unstable combustion regimes such as low temperature combustion.
Technical Paper

Transient A/F Estimation and Control Using a Neural Network

1997-02-24
970619
A new estimator for IC engine A/F ratio is described. A/F ratio is important for engine operation since it determines the quantities of engine emissions, such as HC, CO, NOx, the conversion efficiency of catalyst systems, and the engine combustion stability. The A/F ratio estimator described in this paper is based on a fundamental metric that relies on inducing and detecting crankshaft speed fluctuations caused by modulating the engine's fuel injection pulse widths. Fuel pulse width modulation varies the instantaneous combustion A/F ratio crankshaft velocity. Synchronous measurement of crankshaft velocity provides a metric that, when used with other engine state variables as inputs to a conventional neural network, can accurately estimate A/F ratio. The estimator provides A/F information when a physical sensor is not available.
Journal Article

Towards an Optimum Aftertreatment System Architecture

2015-01-14
2015-26-0104
Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
Technical Paper

Time-Resolved Measurement of Speciated Hydrocarbon Emissions During Cold Start of a Spark-Ignited Engine

1994-03-01
940963
Speciated HC emissions from the exhaust system of a production engine without an active catalyst have been obtained with 3 sec time resolution during a 70°F cold start using two control strategies. For the conventional cold start, the emissions were initially enriched in light fuel alkanes and depleted in heavy aromatic species. The light alkanes fell rapidly while the lower vapor pressure aromatics increased over a period of 50 sec. These results indicate early retention of low vapor pressure fuel components in the intake manifold and exhaust system. Loss of higher molecular weight HC species does occur in the exhaust system as shown by experiments in which the exhaust system was preheated to 100° C. The atmospheric reactivity of the exhaust HC emissions for photochemical smog formation increases as the engine warms.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

2005-04-11
2005-01-0186
Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

2015-09-01
2015-01-1992
Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
Technical Paper

Thermodynamic and Cycle Models for a Low-Pressure CO2 Refrigeration Cycle

1999-03-01
1999-01-0869
Carbon dioxide (CO2)-based refrigeration systems have been proposed as environmentally benign alternatives to current automotive air conditioners. The CO2 vapor-compression system requires very high operating pressures and complicated control strategies. Recent experimental results indicate that operating pressures comparable to those of current automotive air conditioners can be attained by the inclusion of a secondary carrier fluid (a “co-fluid”), with solution and desolution of the CO2 from the co-fluid substituting for condensation and vaporization of pure CO2. In this work, modeling tools have been developed to optimize the CO2/co-fluid cycle, including the selection of a co-fluid, the CO2/co-fluid ratio (the “loading”), and the operating conditions.
Technical Paper

Thermal Reactor - Design, Development and Performance

1971-02-01
710293
Thermal reactor systems have been designed to assist in the development of a low emission concept vehicle to meet exhaust emission goals of 0.82 gm/mile hydrocarbon, 7.1 gm/mile carbon monoxide, and 0.68 gm/mile nitrogen oxides established by the Inter-Industry Emission Control (IIEC) Program. The reactor includes design features required for acceptable life characteristics, together with the quick warm-up necessary to achieve the emission targets. Exhaust gas recirculation and enrichened carburetion are used to reduce the oxides of nitrogen. Associated problems defined during development of several thermal reactor systems are described. The primary problem was achieving durability at the typically high operating exhaust gas temperatures (1600-1800 F) necessary for concurrent HC, CO, and NOx control.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

2007-04-16
2007-01-0224
On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

2009-04-20
2009-01-0628
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

The Relationship Between Catalyst Hydrocarbon Conversion Efficiency and Oxygen Storage Capacity

1992-02-01
920831
Measurements of oxygen storage capacity (OSC) and HC conversion efficiency for 17 catalysts were carried out in the laboratory. All catalysts with steady state HC efficiency below 90% were found to have roughly equivalent and very low capacities to store oxygen. However, catalyst oxygen storage capacity was seen to rise sharply with HC conversion efficiency in excess of 90 percent. These results parallel the trends which are observed between rear HEGO/EGO indexes for OBD-II catalyst monitoring and HC conversion efficiency. In addition, temperature programed reduction (TPR) was found to lend insight into the relationship between catalyst OSC and HC conversion efficiency by providing a qualitative understanding of the mechanisms by which OSC deteriorates. TPR profiles showed that most of the usable oxygen storage is derived from surface ceria which is interacted with precious metals.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

The Occurrence of Flash Boiling in a Port Injected Gasoline Engine

1998-10-19
982522
The occurrence of flash boiling in the fuel spray of a Port Fuel Injected (PFI) spark ignition engine has been observed and photographed during normal automotive vehicle operating conditions. The flash boiling of the PFI spray has a dramatic affect on the fuel spray characteristics such as droplet size and spray cone angle which can affect engine transient response, intake valve temperature and possibly hydrocarbon emissions. A new method of correlating the spray behavior using the equilibrium vapor/liquid (V/L) volume ratio of the fuel at the measured fuel temperature and manifold pressure is introduced.
Technical Paper

The Molecular Analysis of Sulfate Species in Environmental Aerosols Using Chemical Ionization Mass Spectrometry

1977-02-01
770063
Speciation of sulfurous acid, sulfuric acid and ammonium sulfate collected from the aerosol phase on a Fluoropore filter has been readily accomplished using techniques of chemical ionization mass spectrometry combined with thermal separation. Thermal separation of ammonium hydrogen sulfate from ammonium sulfate was not possible. Spectral separation of these species by selective ionization is proposed. Analysis of sulfate aerosols collected from ambient air and catalyzed vehicle emissions is described. It was found that sulfuric acid aerosol was rapidly converted to ammonium sulfate or ammonium hydrogen sulfate in the presence of ambient concentrations of ammonia. Ambient samples collected in the Detroit metropolitan area have been found to contain only trace quantities of sulfuric aicd. Sulfate samples collected from a dilution tube into which catalyzed vehicle exhaust was injected were found to contain significant quantities of ammonium sulfate in addition to sulfuric acid.
X