Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

What Fuel Economy Improvement Technologies Could Aid the Competitiveness of Light-Duty Natural Gas Vehicles?

1999-05-03
1999-01-1511
The question of whether increasing the fuel economy of light-duty natural gas fueled vehicles can improve their economic competitiveness in the U.S. market, and help the US Department of Energy meet stated goals for such vehicles is explored. Key trade-offs concerning costs, exhaust emissions and other issues are presented for a number of possible advanced engine designs. Projections of fuel economy improvements for a wide range of lean-burn engine technologies have been developed. It appears that compression ignition technologies can give the best potential fuel economy, but are less competitive for light-duty vehicles due to high engine cost. Lean-burn spark ignition technologies are more applicable to light-duty vehicles due to lower overall cost. Meeting Ultra-Low Emission Vehicle standards with efficient lean-burn natural gas engines is a key challenge.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

2005-04-11
2005-01-0186
Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

2015-09-01
2015-01-1992
Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
Technical Paper

The Use of Small Engines as Surrogates for Research in Aftertreatment, Combustion, and Fuels

2006-11-13
2006-32-0035
In this research, small, single cylinder engines have been used to simulate larger engines in the areas of aftertreatment, combustion, and fuel formulation effects. The use of small engines reduces overall research cost and allows more rapid experiments to be run. Because component costs are lower, it is also possible to investigate more variations and to sacrifice components for materials characterization and for subsequent experiments. Using small engines in this way is very successful in some cases. In other cases, limitations of the engines influence the results and need to be accounted for in the experimental design and data analysis. Some of the results achieved or limitations found may be of interest to the small engine market, and this paper is offered as a summary of the authors' research in these areas. Research is being conducted in two areas. First, small engines are being used to study the rapid aging and poisoning of exhaust aftertreatment catalysts.
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

2007-04-16
2007-01-0224
On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

2009-04-20
2009-01-0628
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Journal Article

The Impact of Low Octane Hydrocarbon Blending Streams on the Knock Limit of “E85”

2013-04-08
2013-01-0888
Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called “E85,” underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane “E85” fuel.
Technical Paper

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

2007-10-29
2007-01-4076
The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 90. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant Φ conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling the HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50.
Technical Paper

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether

2005-05-11
2005-01-2135
The influence of the small amounts (1-3%) of the additive di-tertiary butyl peroxide (DTBP) on the combustion event of Homogeneous Charge Compression Ignition (HCCI) engines was investigated using engine experiments, numerical modeling, and carbon-14 isotope tracing. DTBP was added to neat ethanol and diethyl ether (DEE) in ethanol fuel blends for a range of combustion timings and engine loads. The addition of DTBP to the fuel advanced combustion timing in each instance, with the DEE-in-ethanol mixture advancing more than the ethanol alone. A numerical model reproduced the experimental results. Carbon-14 isotope tracing showed that more ethanol burns to completion in DEE-in-ethanol blends with a DTBP additive when compared to results for DEE-in-ethanol without the additive. However, the addition of DTBP did not elongate the heat release in either case.
Technical Paper

The Effect of Oxygenates on Diesel Engine Particulate Matter

2002-05-06
2002-01-1705
A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50% less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Technical Paper

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

2008-10-06
2008-01-2493
It is widely recognized that future NOx and particulate matter (PM) emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion and aftertreatment technologies will be required. In this study, advanced combustion modes operating with a diesel particulate filter (DPF) and a lean NOx trap (LNT) catalyst were evaluated on a 1.7 liter 4-cylinder diesel engine. The combustion approaches included baseline engine operation with and without exhaust gas recirculation (EGR) and one PCCI-type (premixed charge combustion ignition) combustion mode to enable high efficiency clean combustion (HECC). Five steady-state operating conditions were evaluated. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable.
Technical Paper

Symbolic Time-Series Analysis of Engine Combustion Measurements

1998-02-23
980624
We present techniques of symbolic time-series analysis which are useful for analyzing temporal patterns in dynamic measurements of engine combustion variables. We focus primarily on techniques that characterize predictability and the occurrence of repeating temporal patterns. These methods can be applied to standard, cycle-resolved engine combustion measurements, such as IMEP and heat release. The techniques are especially useful in cases with high levels of measurement and/or dynamic noise. We illustrate their application to experimental data from a production V8 engine and a laboratory single-cylinder engine.
Technical Paper

Sulfur Tolerance of Selective Partial Oxidation of NO to NO2 in a Plasma

1999-10-25
1999-01-3687
Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3. The SO3 leads to increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

2008-10-06
2008-01-2501
This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NOx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NOx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NOx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%).
Technical Paper

Simultaneous Low Engine-Out NOx and Particulate Matter with Highly Diluted Diesel Combustion

2003-03-03
2003-01-0262
This paper describes the simultaneous reduction of nitrogen oxides (NOx) and particulate matter (PM) in a modern light-duty diesel engine under high exhaust gas recirculation (EGR) levels. Simultaneous reduction of NOx and PM emissions was observed under lean conditions at several low to moderate load conditions using two different approaches. The first approach utilizes a throttle to increase EGR rate beyond the maximum rate possible with sole use of the EGR valve for a particular engine condition. The second approach does not use a throttle, but rather uses a combination of EGR and manipulation of injection parameters. A significant reduction in particulate matter size and concentration was observed corresponding to the reduction in particulate mass. This PM reduction was accompanied by a significant shift in the heat release profile. In addition, there were significant cylinder-to-cylinder variations in particulate matter characteristics, gaseous emissions, and heat release.
X