Refine Your Search

Topic

Search Results

Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Technical Paper

SI Engine Trends: A Historical Analysis with Future Projections

2015-04-14
2015-01-0972
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number.
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Technical Paper

Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

2014-04-01
2014-01-1596
Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel.
Technical Paper

Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends

2010-04-12
2010-01-0619
Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

Impact of Multimode Range and Location on Urban Fuel Economy on a Light-Duty Spark-Ignition Based Powertrain Using Vehicle System Simulations

2020-04-14
2020-01-1018
Multimode engine operation uses two or more combustion modes to maximize engine efficiency across the operational range of a vehicle to achieve higher overall vehicle fuel economy than is possible with a single combustion mode. More specifically for this study, multimode solutions are explored that make use of boosted SI under high load operation and other advanced combustion modes such as advanced compression ignition (ACI) under part-load conditions to enable additional engine efficiency improvements across a broader range of the engine operating map. ACI combustion has well-documented potential to improve efficiency and emissions under part-load operation but poses challenges that limit full engine speed-load range. This study investigates the potential impact of ACI operational range on simulated fuel economy to help focus research on areas with the most opportunity for improving fuel economy.
Technical Paper

Impact of Delayed Spark Restrike on the Dynamics of Cyclic Variability in Dilute SI Combustion

2016-04-05
2016-01-0691
Spark-ignition (SI) engines can derive substantial efficiency gains from operation at high dilution levels, but sufficiently high-dilution operation increases the occurrence of misfires and partial burns, which induce higher levels of cyclic-variability in engine operation. This variability has been shown to have both stochastic and deterministic components, with residual fraction impacts on charge composition being the major source of the deterministic component through its non-linear effect on ignition and flame propagation characteristics. This deterministic coupling between cycles offers potential for next-cycle control approaches to allow operation near the edge of stability. This paper aims to understand the effect of spark strategies, specifically the use of a second spark (restrike) after the main spark, on the deterministic coupling between engine cycles by operating at high dilution levels using both excess air (i.e. lean combustion) and EGR.
Technical Paper

Ignition Delay in Low Temperature Combustion

2018-04-03
2018-01-1125
Low temperature combustion (LTC) strategies present a means of reducing soot and oxides of nitrogen (NOx) emissions while simultaneously increasing efficiency relative to conventional combustion modes. By sufficiently premixing fuel and air before combustion, LTC strategies avoid high fuel-to-air equivalence ratios that lead to soot production. Dilution of the mixture lowers the combustion temperatures to reduce NOx production and offers thermodynamic advantages for improved efficiency. However, issues such as high heat release rates (HRRs), incomplete combustion, and difficulty in controlling the timing of combustion arise with low equivalence ratios and combustion temperatures. Ignition delay (the time until the start of combustion) is a way to quantify the time available for fuel and air to mix inside the cylinder before combustion. Previous studies have used ignition delay to explain trends seen in LTC such as combustion stability and HRRs.
Technical Paper

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

2019-09-09
2019-24-0103
This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
Journal Article

Engine Operating Conditions and Fuel Properties on Pre-Spark Heat Release and SPI Promotion in SI Engines

2017-03-28
2017-01-0688
This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitude are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude.
Technical Paper

Emission Performance of Selected Biodiesel Fuels

2003-05-19
2003-01-1866
Because of the great interest in biodiesel fuels around the world, the International Energy Agency's Committee on Advanced Motor Fuels sponsored this project to determine emissions and performance of a number of biodiesel fuels with a special emphasis on unregulated emissions. Oak Ridge National Laboratory (ORNL) and Technical Research Centre in Finland (VTT) carried out the project with complementary work plans. Several different engines were used between the two sites, and in some cases emissions control catalysts were used, both at ORNL and at VTT. ORNL concentrated on light and medium duty engines, while VTT emphasized a heavy-duty engine and also used a light duty car as a test bed. Common fuels between the two sites for these tests were rape methyl ester in 30% blend and neat, soy methyl ester in 30% blend and neat, used vegetable oil methyl ester (UVOME) in 30% blend, and the Swedish environmental class 1 reformulated diesel (RFD).
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Journal Article

Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

2016-04-05
2016-01-0715
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, isooctane, toluene, and ethanol. Laminar flame speeds for these mixtures, which are calculated using two different methods (an energy fraction mixing rule and a detailed kinetic simulation), span a range of about 6 cm/s. A nominal load of 350 kPa IMEPg at 2000 rpm is maintained with constant fueling and varying CA50 from 8-20 CAD aTDCf. EGR is increased until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds have increased EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Technical Paper

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2012-04-16
2012-01-0376
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI).
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

2010-04-12
2010-01-1087
We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (~0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (~0.75).
X