Refine Your Search

Topic

Author

Search Results

Technical Paper

Tribological and Metallurgical Properties of Nitrided AISI 4340 Steel

2014-04-01
2014-01-0959
Nitridng usually improves wear resistance and can be accomplished using a gas or plasma method; it's necessary to find if there is any difference in surface roughness, wear and/or wear mechanism when choosing between methods for nitriding. In this study, Ball-on-disk wear test was compared on coupons nitrided with five different nitriding cycles that processed at temperatures of 500-570°C, with a processing time of 8 - 80 hrs. Different compound layer thicknesses were formed, (5-8μm), and a minimum of 0.38 mm case depth was produced. Nitrided samples were also compared to nitrocarburized and the nitrided coupons with a “0” compound layer in a ball-on-disk test. Few selected coupons were post-polished and wear test on ball-on-disk test was compared with the coupons without post polishing. Optical surface roughness using White Light Interferometry (WLIM) and metallurgical testing was performed.
Technical Paper

The Research Progress of Dynamic Photo-Elastic Method

2014-04-01
2014-01-0829
With the rapid development of computing technology, high-speed photography system and image processing recently, in order to meet growing dynamic mechanical engineering problems demand, a brief description of advances in recent research which solved some key problems of dynamic photo-elastic method will be given, including:(1) New digital dynamic photo-elastic instrument was developed. Multi-spark discharge light source was replaced by laser light source which was a high intensity light source continuous and real-time. Multiple cameras shooting system was replaced by high-speed photography system. The whole system device was controlled by software. The image optimization collection was realized and a strong guarantee was provided for digital image processing. (2)The static and dynamic photo-elastic materials were explored. The new formula and process of the dynamic photo-elastic model materials will be introduced. The silicon rubber mold was used without the release agent.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Journal Article

Study of the Motion of Floating Piston Pin against Pin Bore

2013-04-08
2013-01-1215
One of the major problems that the automotive industry faces is reducing friction to increase efficiency. Researchers have shown that 30% of the fuel energy was consumed to overcome the friction forces between the moving parts of any automobile, Holmberg et al. [1]. The interface of the piston pin and pin bore is one of the areas that generate high friction under severe working conditions of high temperature and lack of lubrication. In this research, experimental investigation and theoretical simulation have been carried out to analyze the motion of the floating pin against pin bore. In the experimental study, the focus was on analyzing the floating pin motion by using a bench test rig to simulate the floating pin motion in an internal combustion engine. A motion data acquisition system was developed to capture and record the pin motion. Thousands of images were recorded and later analyzed by a code written by MATLAB.
Technical Paper

Structural Vibration of an Engine Block and a Rotating Crankshaft Coupled Through Elastohydrodynamic Bearings

2003-05-05
2003-01-1724
A comprehensive formulation is presented for the dynamics of a rotating flexible crankshaft coupled with the dynamics of an engine block through a finite difference elastohydrodynamic main bearing lubrication algorithm. The coupling is based on detailed equilibrium conditions at the bearings. The component mode synthesis is employed for modeling the crankshaft and block dynamic behavior. A specialized algorithm for coupling the rigid and flexible body dynamics of the crankshaft within the framework of the component mode synthesis has been developed. A finite difference lubrication algorithm is used for computing the oil film elastohydrodynamic characteristics. A computationally accurate and efficient mapping algorithm has been developed for transferring information between a high - density computational grid for the elastohydrodynamic bearing solver and a low - density structural grid utilized in computing the crankshaft and block structural dynamic response.
Journal Article

Spatial Phase-Shift Digital Shearography for Out-of-Plane Deformation Measurement

2014-04-01
2014-01-0824
Measuring deformation under dynamic loading is still a key problem in the automobile industry. The first spatial phase-shift shearography system for relative deformation measurement is reported. Traditional temporal phase-shift technique-based shearography systems are capable of measuring relative deformation by using a reference object. However, due to its low acquisition rate, the existing temporal phase-shift shearography system can be only used under static loading situations. This paper introduces a digital shearography system which utilizes the spatial phase-shift technique to obtain an extremely high acquisition rate. The newly developed spatial phase-shift shearography system uses a Michelson-Interferometer as the shearing device. A high power laser at 532nm wavelength is used as the light source. A one mega pixels high speed CCD camera is used to record the speckle pattern interference.
Journal Article

Scuffing Test Rig for Piston Wrist Pin and Pin Bore

2015-04-14
2015-01-0680
In practice, the piston wrist pin is either fixed to the connecting rod or floats between the connecting rod and the piston. The tribological behavior of fixed wrist pins have been studied by several researchers, however there have been few studies done on the floating wrist pin. A new bench rig has been designed and constructed to investigate the tribological behavior between floating pins and pin bore bearings. The experiments were run using both fixed pins and floating pins under the same working conditions. It was found that for fixed pins there was severe damage on the pin bore in a very short time (5 minutes) and material transfer occurs between the wrist pin and pin bore; however, for the floating pin, even after a long testing time (60 minutes) there was minimal surface damage on either the pin bore or wrist pin.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Residual Stresses in As-Quenched Aluminum Castings

2008-04-14
2008-01-1425
A significant amount of residual stresses can be developed in aluminum castings during heat treatment. This paper reports an experimental study of the residual stress distributions in aluminum castings after solution treatment and water quench. The residual stresses in aluminum castings are measured using both optical and resistance strain rosettes. The optical strain rosette technique was recently developed in conjunction with ring-core cutting method for residual stress measurement. The measured residual stresses from optical and resistance strain rosettes are compared with the results of X-ray and neutron diffraction measurements. The advantages and disadvantages of various measurement methods are discussed.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Optical Measurement of Residual Stress at the Deep-Rolled Crankshaft Fillet

2004-03-08
2004-01-1500
Crankshaft fillet is subjected to a cyclic bending stress during operation. Fatigue cracks are observed at the fillet during the fatigue test. Compressive stresses are generated by deep-rolling process in order to increase the surface hardness and improve the fatigue strength. To examine the deep-rolling effect, the residual stresses at the fillet need to be investigated. Incremental hole drilling and ISSR (interferometric strain/slope rosette) method is applied to measure the residual stresses at the bottom of the fillet. Incremental hole drilling process is to gradually remove material and mill a hole on the specimen surface in order to relax stress. The ISSR is composed of three micro-indentations, which are indented near the hole and would generate interferometric fringe patterns upon incident laser beam. With incremental drilling, stress relaxation causes the relieved strains, which in turn cause the shifts of interferometric patterns.
Technical Paper

Oil Film Dynamic Characteristics for Journal Bearing Elastohydrodynamic Analysis Based on a Finite Difference Formulation

2003-05-05
2003-01-1669
A fast and accurate journal bearing elastohydrodynamic analysis is presented based on a finite difference formulation. The governing equations for the oil film pressure, stiffness and damping are solved using a finite difference approach. The oil film domain is discretized using a rectangular two-dimensional finite difference mesh. In this new formulation, it is not necessary to generate a global fluidity matrix similar to a finite element based solution. The finite difference equations are solved using a successive over relaxation (SOR) algorithm. The concept of “Influence Zone,” for computing the dynamic characteristics is introduced. The SOR algorithm and the “Influence Zone” concept significantly improve the computational efficiency without loss of accuracy. The new algorithms are validated with numerical results from the literature and their numerical efficiency is demonstrated.
Technical Paper

Offset Algorithm for Compound Angle Machining of Cummins Cylinder Heads

2005-04-11
2005-01-0506
Proper valve angles and concentric valve seats are critical to performance of an engine. If the valve seat were not right, the valve is not going to seat properly resulting in reduced power output. Although the performance of CNC machines is accurate, unavoidable human errors at the part loading position have serious repercussions on engine performance. A solution algorithm presented in this paper employs the principles of inverse kinematics wherein a faulty compound-hole angle axis in space caused by the translational and rotational errors at the part loading position is identified with an imaginary true axis in space by enforcing identity through a modified machine axes.
Technical Paper

Numerical Investigation of the Spark Plug Orientation Effects on Flame Kernel Growth

2019-01-15
2019-01-0005
Spark plug design is critical for the performance of spark ignited (SI) engines, however, its orientation is frequently not controlled for most of production engines, which has great impacts on ignition and subsequent flame propagation processes. In the present work, a recently developed comprehensive ignition system model--the VTF ignition model, has been employed to investigate the effects of spark plug orientation on ignition and flame kernel growth. Three orientations for the spark plug, including downstream, crossflow, and upstream relative to the flow, have been considered under a typical a high-speed high-load condition in a GDI engine. Electrical circuitry model was validated by comparing the simulation results with measured secondary current and secondary voltage with good agreement.
Technical Paper

Modified Experimental Approach to Investigate Coefficient of Friction and Wear under Lubricated Fretting Condition by Utilizing SRV Test Machine

2018-04-03
2018-01-0835
Fretting is an important phenomenon that happens in many mechanical parts. It is the main reason in deadly failures in automobiles, airliners, and turbine engines. The damage is noticed between two surfaces clamped together by bolts or rivets that are nominally at rest, but have a small amplitude oscillation because of vibration or local cyclic loading. Fretting damage can be divided into two types. The first type is the fretting fatigue damage where a crack would initiate and propagate at specific location at the interface of the mating surfaces. Cracks usually initiate in the material with lower strength because of the local cyclic loading conditions which eventually lead to full failure. The second type is the fretting wear damage because of external vibration. Researchers have investigated this phenomenon by theoretical modeling and experimental approaches. Although a lot of research has been done on fretting damage, some of the parameters have not been well studied.
Technical Paper

Measurement of Thermal Residual Strain Induced During the Hardening of a Sheet Metal and Reinforced Composite by Digital Shearography

2005-04-11
2005-01-0895
Shearography is an interferometric, non-contact and full field method for direct measurement of first derivatives of deformation (strain). It is relatively insensitive to environmental disturbances and has been proven to be a practical measuring tool for nondestructive testing and evaluation (NDT/NDE). In this paper it has been employed to study the thermal residual strains produced during the reinforcement of a composite to a sheet metal. The reinforced composite is used as an additive to provide extra strength to the sheet metal. The reinforcement process involves gradual heating of the glued composite to a temperature of around 175°C - 180°C and then allowing it cool down to room temperature. During the heating process both the composite and the sheet metal are strained, but during the cooling process some amount of strain is left behind in the sheet metal and it has a key role to play when the product is used for critical parts in automobile and aircraft industries.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

Low Friction Coating for High Temperature Bolted Joints in IC Engines

2023-04-11
2023-01-0733
The IC engine still plays an important role in global markets, although electrified vehicles are highly demanded in some markets. Emission requirements for stoichiometric operation are challenging. This requires the bolted joints for turbo, EGR (Exhaust Gas Recirculation) and exhaust manifold to work under much higher temperature than before. How to avoid fastener breakage due to bolt bending caused by cyclic changes of the thermal conditions in engines is a big challenge. The temperatures of the components in the exhaust, EGR (Exhaust Gas Recirculation) and turbo systems change from ambient temperature to about 800 ~ 1000 °C when engines run at peak power with wide-open throttle. The temperature change induces catastrophic cyclic bending and axial strain to the fasteners. This research describes a method to reduce the cyclic bending displacement in the fasteners using a low friction washer.
Journal Article

Long Life Axial Fatigue Strength Models for Ferrous Powder Metals

2018-04-03
2018-01-1395
Two models are presented for the long life (107 cycles) axial fatigue strength of four ferrous powder metal (PM) material series: sintered and heat-treated iron-carbon steel, iron-copper and copper steel, iron-nickel and nickel steel, and pre-alloyed steel. The materials are defined at ranges of carbon content and densities using the broad data available in the Metal Powder Industries Federation (MPIF) Standard 35 for PM structural parts. The first model evaluates 107 cycles axial fatigue strength as a function of ultimate strength and the second model as a function of hardness. For all 118 studied materials, both models are found to have a good correlation between calculated and 107 cycles axial fatigue strength with a high Pearson correlation coefficient of 0.97. The article provides details on the model development and the reasoning for selecting the ultimate strength and hardness as the best predictors for 107 cycles axial fatigue strength.
Technical Paper

Improvements to a CFR Engine Three Pressure Analysis GT-Power Model for HCCI and SI Conditions

2020-01-24
2019-32-0608
While experimental data measured directly on the engine are very valuable, there is a limitation of what measurements can be made without modifying the engine or the process that is being investigated, such as cylinder temperature. In order to supplement the experimental results, a Three Pressure Analysis (TPA) GT-Power model of the Cooperative Fuel Research (CFR) engine was previously developed and validated for estimating cylinder temperature and residual fraction. However, this model had only been validated for normal and knocking spark ignition (SI) combustion with RON-like intake conditions (naturally aspirated, <52 °C). This work presents improvements made to the GT-Power model and the expansion of its use for HCCI combustion. The burn rate estimation sub-model was modified to allow for low temperature heat release estimation and compression ignition operation.
X