Refine Your Search

Topic

Search Results

Journal Article

Transient Engine Emulation within a Laboratory Testbed for Aircraft Power Systems

2014-09-16
2014-01-2170
This paper presents the details of an engine emulation system utilized within a Hardware-in-the-Loop (HIL) test environment for aircraft power systems. The paper focuses on the software and hardware interfaces that enable the coupling of the engine model and the generator hardware. In particular, the rotor dynamics model that provides the critical link between the modeled dynamics of the engine and the measured dynamics of the generator is described in detail. Careful consideration for the measured torque is included since the measurement contains inertial effects as well as torsional resonances. In addition, the rotor model is equipped with the ability to apply power and speed scaling between the engine and generator.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
Technical Paper

Risk Assessment of Fuel Property Variability Using Quasi-Random Sampling/Design of Experiments Methodologies

2019-03-19
2019-01-1387
Increases in on-board heat generation in modern military aircraft have led to a reliance on thermal management techniques using fuel as a primary heat sink. However, recent studies have found that fuel properties, such as specific heat, can vary greatly between batches, affecting the amount of heat delivered to the fuel. With modern aircraft systems utilizing the majority of available heat sink capacity, an improved understanding of the effects of fuel property variability on overall system response is important. One way to determine whether property variability inside a thermal system causes failure is to perform uncertainty analyses on fuel thermophysical properties and compare results to a risk assessment metric. A sensitivity analysis can be performed on any properties that cause inherent system variability to determine which properties contribute the most significant impact.
Technical Paper

Rapid Access to High-Resolution Thermal/Fluid Component Modeling

2012-10-22
2012-01-2170
Although computational fluid dynamics (CFD) simulations have been widely used to successfully resolve turbulence and boundary layer phenomena induced by microscale flow passages in advanced heat exchanger concepts, the expense of such simulations precludes their use within system-level models. However, the effect of component design changes on systems must be better understood in order to optimize designs with little thermal margin, and CFD simulations greatly enhance this understanding. A method is presented to introduce high resolution, 3-D conjugate CFD calculations of candidate heat exchanger cores into dynamic aerospace subsystem models. The significant parameters guiding performance of these heat exchangers are identified and a database of CFD solutions is built to capture steady and unsteady performance of microstructured heat exchanger cores as a function of the identified parameters and flow conditions.
Technical Paper

Power Thermal Management System Design for Enhanced Performance in an Aircraft Vehicle

2010-11-02
2010-01-1805
The thermal management of modern aircraft has become more challenging as aircraft capabilities have increased. The use of thermally resistant composite skins and the desire for low observability, reduced ram inlet size and number, have reduced the ability to transfer heat generated by the aircraft to the environment. As the ability to remove heat from modern aircraft has decreased, the heat loads associated with the aircraft have increased. Early in the aircraft design cycle uncertainty exists in both aircraft requirements and simulation predictions. In order to mitigate the uncertainty, it is advantageous to design thermal management systems that are insensitive to design cycle uncertainty. The risk associated with design uncertainty can be reduced through robust optimization. In the robust optimization of the thermal management system, three noise factors were selected: 1) engine fan air temperature, 2) avionics thermal load, and 3) engine thrust.
Journal Article

Power Quality Assessment through Stochastic Equivalent Circuit Analysis

2016-09-20
2016-01-1988
Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
Technical Paper

Power Quality Analysis Framework for AC and DC Electrical Systems

2014-09-16
2014-01-2209
Analyzing and maintaining power quality in an electrical power system (EPS) is essential to ensure that power generation, distribution, and loads function as expected within their designated operating regimes. Standards such as MIL-STD-704 and associated documents provide the framework for power quality metrics that need to be satisfied under varying operating conditions. However, analyzing these power quality metrics within a fully integrated EPS based solely on measurements of relevant signals is a different challenge that requires a separate framework containing rules for data acquisition, metric calculations, and applicability of metrics in certain operating conditions/modes. Many EPS employed throughout industry and government feature various alternating-current (ac) power systems.
Technical Paper

Model Validation Planning and Process on the INVENT Program

2014-09-16
2014-01-2116
Validation is a critical component of model-based design (MBD). Without it, regardless of the level of model verification, neither the accuracy nor the domain of applicability of the models is known. Thus, it is risky to base design decisions on the predictions of unvalidated models. The Integrated Vehicle Energy Technology (INVENT) program is planning a series of hardware experiments that will be used to validate a large set of unit-, subsystem-, and system-level models. Although validating such a large number of interacting models is a large task, it provides an excellent opportunity to test the limits of MBD.
Journal Article

Introduction to Control Volume Based Transient Thermal Limit

2020-03-10
2020-01-0039
Advancement in modern aircraft with the development of more dynamic and efficient technologies has led to these technologies increasingly operated near or at their operation limits. More comprehensive analysis methods based on high-fidelity models co-simulated in an integrated environment are needed to support the full utilization of these advanced technologies. Furthermore, the additional information provided by these new analyses needs to be correlated with updates to traditional metrics and specifications. One such case is the thermal limit requirement that sets the upper bound on a thermal system temperature. Traditionally, this bound is defined based on steady-state conditions. However, advanced thermal management systems experience dynamic events where the temperature is not static and may violate steady-state requirements for brief periods of time.
Journal Article

Integrated Power and Thermal Management System (IPTMS) Demonstration Including Preliminary Results of Rapid Dynamic Loading and Load Shedding at High Power

2015-09-15
2015-01-2416
An IPTMS hardware facility has been established in the laboratories of the Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL) at Wright-Paterson Air Force Base (WPAFB). This hardware capability was established to analyze the transient behavior of a high power Electrical Power System (EPS) coupled virtually to a Thermal Management System (TMS) under fast dynamic loading conditions. The system incorporates the use of dynamic electrical load, engine emulation, energy storage, and emulated thermal loads operated to investigate dynamics under step load conditions. Hardware architecture and control options for the IPTMS are discussed. This paper summarizes the IPTMS laboratory demonstration system, its capabilities, and preliminary test results.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Enhancements to Software Tools and Progress in Model-Based Design of EOA on the INVENT Program

2014-09-16
2014-01-2118
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems across multiple disciplines. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several MBD-derived software tools, including models of EOA technologies, have been developed. To validate these models and demonstrate the performance of EOA technologies, a series of Integrated Ground Demonstration (IGD) hardware tests are planned. Several of the numerous EOA software tools and MBD-based processes have been updated and adapted to support this activity.
Journal Article

Electric versus Hydraulic Flight Controls: Assessing Power Consumption and Waste Heat Using Stochastic System Methods

2017-09-19
2017-01-2036
Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
Technical Paper

Development and Performance of a Reduced Order Dynamic Aircraft Model

2015-09-15
2015-01-2415
A reduced order dynamic aircraft model has been created for the purpose of enabling constructive simulation studies involving integrated thermal management subsystems. Such studies are motivated by the increasing impact of on-board power and thermal subsystems to the overall performance and mission effectiveness of modern aircraft. Previous higher-order models that have been used for this purpose have the drawbacks of much higher development time, along with much higher execution times in the simulation studies. The new formulation allows for climbs, accelerations and turns without incurring computationally expensive stability considerations; a dynamic inversion control law provides tracking of user-specified mission data. To assess the trade-off of improved run-time performance against model capability, the reduced order formulation is compared to a traditional six degree-of-freedom model of the same air vehicle.
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
Technical Paper

Data Acquisition Uncertainty

2012-10-22
2012-01-2206
With the advent of modern parallel computing systems, larger and more accurate simulation models have been developed to simulate real-world hardware. These models require verification and validation (V&V), the latter using data acquired from representative hardware to ascertain the uncertainty of the model. An understanding of the errors introduced by the measurement system into the validation assessment allows for the model assessor to attribute errors to the measurement system as opposed to the model or experimental setup. Once the model(s) have been through the validation process, decision makers can better understand the risk associated with using these models. This paper describes one possible procedure to quantify the uncertainty of the data acquisition (DAQ) system.
Technical Paper

Air Cycle Machine for Transient Model Validation

2016-09-20
2016-01-2000
As technology for both military and civilian aviation systems mature into a new era, techniques to test and evaluate these systems have become of great interest. To achieve a general understanding as well as save time and cost, the use of computer modeling and simulation for component, subsystem or integrated system testing has become a central part of technology development programs. However, the evolving complexity of the systems being modeled leads to a tremendous increase in the complexity of the developed models. To gain confidence in these models there is a need to evaluate the risk in using those models for decision making. Statistical model validation techniques are used to assess the risk of using a given model in decision making exercises. In this paper, we formulate a transient model validation challenge problem for an air cycle machine (ACM) and present a hardware test bench used to generate experimental data relevant to the model.
Journal Article

A Specification Analysis Framework for Aircraft Systems

2016-09-20
2016-01-2023
Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

A Multi-Domain Component Based Modeling Toolset for Dynamic Integrated Power and Thermal System Modeling

2019-03-19
2019-01-1385
Design of modern aircraft relies heavily on modeling and simulation for reducing cost and improving performance. However, the complexity of aircraft architectures requires accurate modeling of dynamic components across many subsystems. Integrated power and thermal modeling necessitates dynamic simulations of liquid, air, and two-phase fluids within vapor cycle system components, air cycle machine and propulsion components, hydraulic components, and more while heat generation of many on-board electrical components must also be precisely calculated as well. Integration of these highly complex subsystems may result in simulations which are too computationally expensive for quickly modeling extensive variations of aircraft architecture, or will require simulations with reduced accuracy in order to provide computationally inexpensive models.
X